{"title":"区间型模糊回归模型的评价","authors":"Y. Yabuuchi","doi":"10.1109/UMSO.2018.8637234","DOIUrl":null,"url":null,"abstract":"A fuzzy regression model is classified into two types: non-interval-type and interval-type fuzzy regressions. A non-interval-type fuzzy regression model can analyze errors similar to the manner in which a statistical least squares model can. In contrast, because an interval-type fuzzy regression model illustrates the possibility of an analyzed system by including data, the obtained regression does not analyze prediction accuracies such as in error analysis. In other words, it is important to illustrate the amount of possibilities of an analyzed system by regression outputs. The appropriate evaluation functions, which can be easily interpreted, are used for this purpose. This paper proposes a new evaluation function, which is validated using a numerical example. The evaluation function is explained and discussed herein using the numerical example.","PeriodicalId":433225,"journal":{"name":"2018 International Conference on Unconventional Modelling, Simulation and Optimization - Soft Computing and Meta Heuristics - UMSO","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of an Interval-Type Model on Fuzzy Regression\",\"authors\":\"Y. Yabuuchi\",\"doi\":\"10.1109/UMSO.2018.8637234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy regression model is classified into two types: non-interval-type and interval-type fuzzy regressions. A non-interval-type fuzzy regression model can analyze errors similar to the manner in which a statistical least squares model can. In contrast, because an interval-type fuzzy regression model illustrates the possibility of an analyzed system by including data, the obtained regression does not analyze prediction accuracies such as in error analysis. In other words, it is important to illustrate the amount of possibilities of an analyzed system by regression outputs. The appropriate evaluation functions, which can be easily interpreted, are used for this purpose. This paper proposes a new evaluation function, which is validated using a numerical example. The evaluation function is explained and discussed herein using the numerical example.\",\"PeriodicalId\":433225,\"journal\":{\"name\":\"2018 International Conference on Unconventional Modelling, Simulation and Optimization - Soft Computing and Meta Heuristics - UMSO\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Unconventional Modelling, Simulation and Optimization - Soft Computing and Meta Heuristics - UMSO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UMSO.2018.8637234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unconventional Modelling, Simulation and Optimization - Soft Computing and Meta Heuristics - UMSO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UMSO.2018.8637234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模糊回归模型分为非区间型和区间型两种。非区间型模糊回归模型可以像统计最小二乘模型那样分析误差。相反,由于区间型模糊回归模型通过包含数据来说明被分析系统的可能性,因此获得的回归不分析预测精度,例如误差分析。换句话说,通过回归输出来说明被分析系统的可能性是很重要的。为此目的使用了易于解释的适当的求值函数。本文提出了一种新的评价函数,并通过数值算例进行了验证。文中用数值算例对评价函数进行了说明和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of an Interval-Type Model on Fuzzy Regression
A fuzzy regression model is classified into two types: non-interval-type and interval-type fuzzy regressions. A non-interval-type fuzzy regression model can analyze errors similar to the manner in which a statistical least squares model can. In contrast, because an interval-type fuzzy regression model illustrates the possibility of an analyzed system by including data, the obtained regression does not analyze prediction accuracies such as in error analysis. In other words, it is important to illustrate the amount of possibilities of an analyzed system by regression outputs. The appropriate evaluation functions, which can be easily interpreted, are used for this purpose. This paper proposes a new evaluation function, which is validated using a numerical example. The evaluation function is explained and discussed herein using the numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of an Interval-Type Model on Fuzzy Regression Toll Optimization Problems with Quadratic Costs [Copyright notice] Numerical modeling of CO2 sequestration into basalt at high pressure and temperature with variable brine solutions UMSO 2018 Committee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1