{"title":"舰船非线性动载荷的Volterra核建模与仿真","authors":"J. Leonard, C. Edrington","doi":"10.1109/ESTS.2013.6523742","DOIUrl":null,"url":null,"abstract":"Integration of nonlinear dynamic loads has become a significant aspect of designing new ships with integrated power systems. System level simulation is one tool for improving performance in prototyping laboratories and ship yards but requires accurate models of these loads for high performance ship design. This paper utilizes the Volterra Series for nonlinear modeling and discusses methods for creating models, through Volterra kernel measurement, from time domain simulations or hardware prototypes. Design of a converter to realize the required input voltage exciter for model development of hardware prototypes is described. Simulation results of a traditional DC-DC boost converter load are presented along with a brief discussion on scaling methods for increased power levels.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling and simulation of shipboard nonlinear dynamic loads using Volterra kernels\",\"authors\":\"J. Leonard, C. Edrington\",\"doi\":\"10.1109/ESTS.2013.6523742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integration of nonlinear dynamic loads has become a significant aspect of designing new ships with integrated power systems. System level simulation is one tool for improving performance in prototyping laboratories and ship yards but requires accurate models of these loads for high performance ship design. This paper utilizes the Volterra Series for nonlinear modeling and discusses methods for creating models, through Volterra kernel measurement, from time domain simulations or hardware prototypes. Design of a converter to realize the required input voltage exciter for model development of hardware prototypes is described. Simulation results of a traditional DC-DC boost converter load are presented along with a brief discussion on scaling methods for increased power levels.\",\"PeriodicalId\":119318,\"journal\":{\"name\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2013.6523742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2013.6523742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and simulation of shipboard nonlinear dynamic loads using Volterra kernels
Integration of nonlinear dynamic loads has become a significant aspect of designing new ships with integrated power systems. System level simulation is one tool for improving performance in prototyping laboratories and ship yards but requires accurate models of these loads for high performance ship design. This paper utilizes the Volterra Series for nonlinear modeling and discusses methods for creating models, through Volterra kernel measurement, from time domain simulations or hardware prototypes. Design of a converter to realize the required input voltage exciter for model development of hardware prototypes is described. Simulation results of a traditional DC-DC boost converter load are presented along with a brief discussion on scaling methods for increased power levels.