一种快速发现web数据中类别和属性相关性的算法

H. Frigui, F. Nasraoui
{"title":"一种快速发现web数据中类别和属性相关性的算法","authors":"H. Frigui, F. Nasraoui","doi":"10.1109/NAFIPS.2002.1018070","DOIUrl":null,"url":null,"abstract":"Feature selections techniques have been used extensively in supervised learning to choose a set of features for a data set that win facilitate and improve classification. In particular, a few techniques exist to select a different subset of feature for each known class, which we refer to as discriminative feature selection. The main objective guiding discriminative feature selection has been the ultimate performance of the classifier system. Unsupervised learning, however, is plagued by the problem of absence of the class labels. In this paper, we propose a fast algorithm for fuzzy unsupervised learning in Web mining, for the case when the attributes/features do not have the same relevance in all clusters. Being a relative of the fuzzy c-means and k-means clustering algorithms, our approach is computationally and implementationally simple, and if desired, can easily be implemented in a scalable mode in an identical manner to previous well known scalable implementations of the k-means. Most importantly, our approach learns a different set of attribute weights for each cluster. The performance of the proposed algorithm is illustrated on real collections of Web documents and Web sessions extracted from a Web server log file.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A fast algorithm for discovering categories and attribute relevance in web data\",\"authors\":\"H. Frigui, F. Nasraoui\",\"doi\":\"10.1109/NAFIPS.2002.1018070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selections techniques have been used extensively in supervised learning to choose a set of features for a data set that win facilitate and improve classification. In particular, a few techniques exist to select a different subset of feature for each known class, which we refer to as discriminative feature selection. The main objective guiding discriminative feature selection has been the ultimate performance of the classifier system. Unsupervised learning, however, is plagued by the problem of absence of the class labels. In this paper, we propose a fast algorithm for fuzzy unsupervised learning in Web mining, for the case when the attributes/features do not have the same relevance in all clusters. Being a relative of the fuzzy c-means and k-means clustering algorithms, our approach is computationally and implementationally simple, and if desired, can easily be implemented in a scalable mode in an identical manner to previous well known scalable implementations of the k-means. Most importantly, our approach learns a different set of attribute weights for each cluster. The performance of the proposed algorithm is illustrated on real collections of Web documents and Web sessions extracted from a Web server log file.\",\"PeriodicalId\":348314,\"journal\":{\"name\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2002.1018070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

特征选择技术已广泛应用于监督学习中,用于为数据集选择一组特征,以促进和改进分类。特别是,有一些技术可以为每个已知的类选择不同的特征子集,我们称之为判别特征选择。判别特征选择的主要目标是分类器系统的最终性能。然而,无监督学习被缺乏类标签的问题所困扰。本文针对属性/特征在所有聚类中不具有相同相关性的情况,提出了一种快速的模糊无监督学习算法。作为模糊c-means和k-means聚类算法的一种相对方法,我们的方法在计算和实现上都很简单,如果需要,可以很容易地以与之前众所周知的k-means可扩展实现相同的方式在可扩展模式下实现。最重要的是,我们的方法为每个集群学习了一组不同的属性权重。通过从Web服务器日志文件中提取的Web文档和Web会话的真实集合来说明所提出算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast algorithm for discovering categories and attribute relevance in web data
Feature selections techniques have been used extensively in supervised learning to choose a set of features for a data set that win facilitate and improve classification. In particular, a few techniques exist to select a different subset of feature for each known class, which we refer to as discriminative feature selection. The main objective guiding discriminative feature selection has been the ultimate performance of the classifier system. Unsupervised learning, however, is plagued by the problem of absence of the class labels. In this paper, we propose a fast algorithm for fuzzy unsupervised learning in Web mining, for the case when the attributes/features do not have the same relevance in all clusters. Being a relative of the fuzzy c-means and k-means clustering algorithms, our approach is computationally and implementationally simple, and if desired, can easily be implemented in a scalable mode in an identical manner to previous well known scalable implementations of the k-means. Most importantly, our approach learns a different set of attribute weights for each cluster. The performance of the proposed algorithm is illustrated on real collections of Web documents and Web sessions extracted from a Web server log file.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1