基于时序引擎的图神经网络预路由松弛预测模型

Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, D. Pan, Yibo Lin
{"title":"基于时序引擎的图神经网络预路由松弛预测模型","authors":"Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, D. Pan, Yibo Lin","doi":"10.1145/3489517.3530597","DOIUrl":null,"url":null,"abstract":"Fast and accurate pre-routing timing prediction is essential for timing-driven placement since repetitive routing and static timing analysis (STA) iterations are expensive and unacceptable. Prior work on timing prediction aims at estimating net delay and slew, lacking the ability to model global timing metrics. In this work, we present a timing engine inspired graph neural network (GNN) to predict arrival time and slack at timing endpoints. We further leverage edge delays as local auxiliary tasks to facilitate model training with increased model performance. Experimental results on real-world open-source designs demonstrate improved model accuracy and explainability when compared with vanilla deep GNN models.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A timing engine inspired graph neural network model for pre-routing slack prediction\",\"authors\":\"Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, D. Pan, Yibo Lin\",\"doi\":\"10.1145/3489517.3530597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and accurate pre-routing timing prediction is essential for timing-driven placement since repetitive routing and static timing analysis (STA) iterations are expensive and unacceptable. Prior work on timing prediction aims at estimating net delay and slew, lacking the ability to model global timing metrics. In this work, we present a timing engine inspired graph neural network (GNN) to predict arrival time and slack at timing endpoints. We further leverage edge delays as local auxiliary tasks to facilitate model training with increased model performance. Experimental results on real-world open-source designs demonstrate improved model accuracy and explainability when compared with vanilla deep GNN models.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

快速和准确的预路由时间预测对于时间驱动的布局至关重要,因为重复的路由和静态定时分析(STA)迭代是昂贵且不可接受的。先前的时序预测工作旨在估计净延迟和回转,缺乏对全局时序指标建模的能力。在这项工作中,我们提出了一个授时引擎启发的图神经网络(GNN)来预测到达时间和在授时端点的松弛时间。我们进一步利用边缘延迟作为局部辅助任务,以提高模型性能来促进模型训练。真实世界开源设计的实验结果表明,与传统的深度GNN模型相比,模型的准确性和可解释性有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A timing engine inspired graph neural network model for pre-routing slack prediction
Fast and accurate pre-routing timing prediction is essential for timing-driven placement since repetitive routing and static timing analysis (STA) iterations are expensive and unacceptable. Prior work on timing prediction aims at estimating net delay and slew, lacking the ability to model global timing metrics. In this work, we present a timing engine inspired graph neural network (GNN) to predict arrival time and slack at timing endpoints. We further leverage edge delays as local auxiliary tasks to facilitate model training with increased model performance. Experimental results on real-world open-source designs demonstrate improved model accuracy and explainability when compared with vanilla deep GNN models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timing macro modeling with graph neural networks Thermal-aware optical-electrical routing codesign for on-chip signal communications PHANES ScaleHLS Terminator on SkyNet: a practical DVFS attack on DNN hardware IP for UAV object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1