{"title":"ICCAD特别会议论文:量子应用的量子变分方法","authors":"Shouvanik Chakrabarti, Xuchen You, Xiaodi Wu","doi":"10.1109/ICCAD51958.2021.9643519","DOIUrl":null,"url":null,"abstract":"Quantum Variational Methods are promising near-term applications of quantum machines, not only because of their potential advantages in solving certain computational tasks and understanding quantum physics but also because of their feasibility on near-term quantum machines. However, many challenges remain in order to unleash the full potential of quantum variational methods, especially in the design of efficient training methods for each domain-specific quantum variational ansatzes. This paper proposes a theory-guided principle in order to tackle the training issue of quantum variational methods and highlights some successful examples.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICCAD Special Session Paper: Quantum Variational Methods for Quantum Applications\",\"authors\":\"Shouvanik Chakrabarti, Xuchen You, Xiaodi Wu\",\"doi\":\"10.1109/ICCAD51958.2021.9643519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Variational Methods are promising near-term applications of quantum machines, not only because of their potential advantages in solving certain computational tasks and understanding quantum physics but also because of their feasibility on near-term quantum machines. However, many challenges remain in order to unleash the full potential of quantum variational methods, especially in the design of efficient training methods for each domain-specific quantum variational ansatzes. This paper proposes a theory-guided principle in order to tackle the training issue of quantum variational methods and highlights some successful examples.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ICCAD Special Session Paper: Quantum Variational Methods for Quantum Applications
Quantum Variational Methods are promising near-term applications of quantum machines, not only because of their potential advantages in solving certain computational tasks and understanding quantum physics but also because of their feasibility on near-term quantum machines. However, many challenges remain in order to unleash the full potential of quantum variational methods, especially in the design of efficient training methods for each domain-specific quantum variational ansatzes. This paper proposes a theory-guided principle in order to tackle the training issue of quantum variational methods and highlights some successful examples.