{"title":"弹性灾害管理响应的机场数字孪生","authors":"E. Agapaki","doi":"10.48550/arXiv.2205.03739","DOIUrl":null,"url":null,"abstract":"Airports are constantly facing a variety of hazards and threats from natural disasters to cybersecurity attacks and airport stakeholders are confronted with making operational decisions under irregular conditions. We introduce the concept of the foundational twin, which can serve as a resilient data platform, incorporating multiple data sources and enabling the interaction between an umbrella of twins. We then focus on providing data sources and metrics for each foundational twin, with an emphasis on the environmental airport twin for major US airports.","PeriodicalId":430111,"journal":{"name":"Learning and Intelligent Optimization","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Airport Digital Twins for Resilient Disaster Management Response\",\"authors\":\"E. Agapaki\",\"doi\":\"10.48550/arXiv.2205.03739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airports are constantly facing a variety of hazards and threats from natural disasters to cybersecurity attacks and airport stakeholders are confronted with making operational decisions under irregular conditions. We introduce the concept of the foundational twin, which can serve as a resilient data platform, incorporating multiple data sources and enabling the interaction between an umbrella of twins. We then focus on providing data sources and metrics for each foundational twin, with an emphasis on the environmental airport twin for major US airports.\",\"PeriodicalId\":430111,\"journal\":{\"name\":\"Learning and Intelligent Optimization\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Intelligent Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.03739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Intelligent Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.03739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Airport Digital Twins for Resilient Disaster Management Response
Airports are constantly facing a variety of hazards and threats from natural disasters to cybersecurity attacks and airport stakeholders are confronted with making operational decisions under irregular conditions. We introduce the concept of the foundational twin, which can serve as a resilient data platform, incorporating multiple data sources and enabling the interaction between an umbrella of twins. We then focus on providing data sources and metrics for each foundational twin, with an emphasis on the environmental airport twin for major US airports.