在Reddit上使用后级情感特征进行自杀风险预测

Kristen Allen, Shrey Bagroy, Alexander L Davis, T. Krishnamurti
{"title":"在Reddit上使用后级情感特征进行自杀风险预测","authors":"Kristen Allen, Shrey Bagroy, Alexander L Davis, T. Krishnamurti","doi":"10.18653/v1/W19-3024","DOIUrl":null,"url":null,"abstract":"This work aims to infer mental health status from public text for early detection of suicide risk. It contributes to Shared Task A in the 2019 CLPsych workshop by predicting users’ suicide risk given posts in the Reddit subforum r/SuicideWatch. We use a convolutional neural network to incorporate LIWC information at the Reddit post level about topics discussed, first-person focus, emotional experience, grammatical choices, and thematic style. In sorting users into one of four risk categories, our best system’s macro-averaged F1 score was 0.50 on the withheld test set. The work demonstrates the predictive power of the Linguistic Inquiry and Word Count dictionary, in conjunction with a convolutional network and holistic consideration of each post and user.","PeriodicalId":201097,"journal":{"name":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"ConvSent at CLPsych 2019 Task A: Using Post-level Sentiment Features for Suicide Risk Prediction on Reddit\",\"authors\":\"Kristen Allen, Shrey Bagroy, Alexander L Davis, T. Krishnamurti\",\"doi\":\"10.18653/v1/W19-3024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to infer mental health status from public text for early detection of suicide risk. It contributes to Shared Task A in the 2019 CLPsych workshop by predicting users’ suicide risk given posts in the Reddit subforum r/SuicideWatch. We use a convolutional neural network to incorporate LIWC information at the Reddit post level about topics discussed, first-person focus, emotional experience, grammatical choices, and thematic style. In sorting users into one of four risk categories, our best system’s macro-averaged F1 score was 0.50 on the withheld test set. The work demonstrates the predictive power of the Linguistic Inquiry and Word Count dictionary, in conjunction with a convolutional network and holistic consideration of each post and user.\",\"PeriodicalId\":201097,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本研究旨在从公共文本中推断心理健康状况,以便早期发现自杀风险。它通过预测Reddit子论坛r/SuicideWatch上用户的自杀风险,为2019年CLPsych研讨会的共享任务A做出贡献。我们使用卷积神经网络来整合Reddit帖子级别的LIWC信息,包括讨论的主题、第一人称焦点、情感体验、语法选择和主题风格。在将用户分为四个风险类别时,我们的最佳系统在保留测试集上的宏观平均F1分数为0.50。这项工作展示了语言调查和单词计数词典的预测能力,结合卷积网络和对每个帖子和用户的整体考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ConvSent at CLPsych 2019 Task A: Using Post-level Sentiment Features for Suicide Risk Prediction on Reddit
This work aims to infer mental health status from public text for early detection of suicide risk. It contributes to Shared Task A in the 2019 CLPsych workshop by predicting users’ suicide risk given posts in the Reddit subforum r/SuicideWatch. We use a convolutional neural network to incorporate LIWC information at the Reddit post level about topics discussed, first-person focus, emotional experience, grammatical choices, and thematic style. In sorting users into one of four risk categories, our best system’s macro-averaged F1 score was 0.50 on the withheld test set. The work demonstrates the predictive power of the Linguistic Inquiry and Word Count dictionary, in conjunction with a convolutional network and holistic consideration of each post and user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depressed Individuals Use Negative Self-Focused Language When Recalling Recent Interactions with Close Romantic Partners but Not Family or Friends Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task ConvSent at CLPsych 2019 Task A: Using Post-level Sentiment Features for Suicide Risk Prediction on Reddit Linguistic Analysis of Schizophrenia in Reddit Posts Predicting Suicide Risk from Online Postings in Reddit The UGent-IDLab submission to the CLPysch 2019 Shared Task A
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1