{"title":"DAFHEA:用于优化问题的动态近似适应度混合EA","authors":"Maumita Bhattacharya, Guojun Lu","doi":"10.1109/CEC.2003.1299903","DOIUrl":null,"url":null,"abstract":"A dynamic approximate fitness-based hybrid evolutionary algorithm is presented here. The proposed model partially replaces expensive fitness evaluation by an approximate model. A cluster-based intelligent guided technique is used to decide on use of expensive function evaluation and dynamically adapt the predicted model. Avoiding expensive function evaluation speeds of the optimisation process. Also additional information derived from the predicted model at lower computational expense, is exploited to improve solution. Experimental findings support the theoretical basis of the proposed framework.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"DAFHEA: a dynamic approximate fitness-based hybrid EA for optimisation problems\",\"authors\":\"Maumita Bhattacharya, Guojun Lu\",\"doi\":\"10.1109/CEC.2003.1299903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic approximate fitness-based hybrid evolutionary algorithm is presented here. The proposed model partially replaces expensive fitness evaluation by an approximate model. A cluster-based intelligent guided technique is used to decide on use of expensive function evaluation and dynamically adapt the predicted model. Avoiding expensive function evaluation speeds of the optimisation process. Also additional information derived from the predicted model at lower computational expense, is exploited to improve solution. Experimental findings support the theoretical basis of the proposed framework.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DAFHEA: a dynamic approximate fitness-based hybrid EA for optimisation problems
A dynamic approximate fitness-based hybrid evolutionary algorithm is presented here. The proposed model partially replaces expensive fitness evaluation by an approximate model. A cluster-based intelligent guided technique is used to decide on use of expensive function evaluation and dynamically adapt the predicted model. Avoiding expensive function evaluation speeds of the optimisation process. Also additional information derived from the predicted model at lower computational expense, is exploited to improve solution. Experimental findings support the theoretical basis of the proposed framework.