不断发展的Web中半持久数据的有效管理

K. Cheng, X. You, Yanchun Zhang
{"title":"不断发展的Web中半持久数据的有效管理","authors":"K. Cheng, X. You, Yanchun Zhang","doi":"10.1109/WAINA.2008.192","DOIUrl":null,"url":null,"abstract":"The Web is an information repository that grows and evolves fast. Traditional data management systems are based on a persistence model that are not suited for management of Web data. In this paper, we propose a semi-persistence model to capture the evolving nature of the Web. By semi-persistence, we mean data with relaxed persistence requirement where obsolete data may be moved to somewhere or removed implicitly and autonomously. In a semi-persistent data management system, data and the associated statistics have to be maintained efficiently to support trend-report queries and age estimation. We propose a space-efficient data structure, called moving bloom filters (MBF) to maintain time-sensitive statistics of underlying data. The preliminary experiments show that the optimized MBF achieves considerable improvement on space usage while maintaining the same precise estimation of frequency statistics.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Management of Semi-Persistent Data for the Evolving Web\",\"authors\":\"K. Cheng, X. You, Yanchun Zhang\",\"doi\":\"10.1109/WAINA.2008.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Web is an information repository that grows and evolves fast. Traditional data management systems are based on a persistence model that are not suited for management of Web data. In this paper, we propose a semi-persistence model to capture the evolving nature of the Web. By semi-persistence, we mean data with relaxed persistence requirement where obsolete data may be moved to somewhere or removed implicitly and autonomously. In a semi-persistent data management system, data and the associated statistics have to be maintained efficiently to support trend-report queries and age estimation. We propose a space-efficient data structure, called moving bloom filters (MBF) to maintain time-sensitive statistics of underlying data. The preliminary experiments show that the optimized MBF achieves considerable improvement on space usage while maintaining the same precise estimation of frequency statistics.\",\"PeriodicalId\":170418,\"journal\":{\"name\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2008.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Web是一个快速增长和发展的信息存储库。传统的数据管理系统基于持久性模型,不适合管理Web数据。在本文中,我们提出了一个半持久化模型来捕捉Web不断发展的本质。通过半持久性,我们指的是具有宽松持久性要求的数据,其中过时的数据可以隐式和自主地移动到某个地方或删除。在半持久性数据管理系统中,必须有效地维护数据和相关统计信息,以支持趋势报告查询和年龄估计。我们提出了一种空间高效的数据结构,称为移动布隆过滤器(MBF),以维护底层数据的时间敏感统计。初步实验表明,优化后的MBF在保持频率统计估计精度不变的情况下,在空间利用率上有了较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Management of Semi-Persistent Data for the Evolving Web
The Web is an information repository that grows and evolves fast. Traditional data management systems are based on a persistence model that are not suited for management of Web data. In this paper, we propose a semi-persistence model to capture the evolving nature of the Web. By semi-persistence, we mean data with relaxed persistence requirement where obsolete data may be moved to somewhere or removed implicitly and autonomously. In a semi-persistent data management system, data and the associated statistics have to be maintained efficiently to support trend-report queries and age estimation. We propose a space-efficient data structure, called moving bloom filters (MBF) to maintain time-sensitive statistics of underlying data. The preliminary experiments show that the optimized MBF achieves considerable improvement on space usage while maintaining the same precise estimation of frequency statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Metadata Generation and its Application to Biological Association Extraction Towards a Usenet-Like Discussion System for Users of Disconnected MANETs A New Centroid-Based Classifier for Text Categorization Explaining Answers from Agent Communication of Semantic Web Information Parallel Computing of CG Using an Open Source Windows Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1