航天器姿态控制的自适应神经控制

K. Krishnakumar, S. Rickard, Susan Bartholomew
{"title":"航天器姿态控制的自适应神经控制","authors":"K. Krishnakumar, S. Rickard, Susan Bartholomew","doi":"10.1109/CCA.1994.381353","DOIUrl":null,"url":null,"abstract":"The spacecraft attitude control which combines the concepts of artificial neural networks and nonlinear adaptive control, is investigated as an alternative to linear control approaches. Two capabilities of neuro-controllers are demonstrated using a nonlinear model of the Space Station Freedom. These capabilities are: 1) synthesis of robust nonlinear controllers using neural networks; and 2) adaptively modifying neuro-controller characteristics for varying inertia characteristics. The main components of the adaptive neuro-controllers include an identification network and a controller network. Both these networks are trained using the backpropagation of error learning paradigm. To ensure robustness of the neuro-controller, an optimally connected neural network is synthesized for the identification network. For the online adaptive control problem, a new technique using a memory filter for error backpropagation is introduced. The performances of the nonlinear neuro-controllers for cases listed above are verified using a nonlinear simulation of the Space Station. Results presented substantiate the feasibility of using neural networks in robust nonlinear adaptive control of spacecraft.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Adaptive neuro-control for spacecraft attitude control\",\"authors\":\"K. Krishnakumar, S. Rickard, Susan Bartholomew\",\"doi\":\"10.1109/CCA.1994.381353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spacecraft attitude control which combines the concepts of artificial neural networks and nonlinear adaptive control, is investigated as an alternative to linear control approaches. Two capabilities of neuro-controllers are demonstrated using a nonlinear model of the Space Station Freedom. These capabilities are: 1) synthesis of robust nonlinear controllers using neural networks; and 2) adaptively modifying neuro-controller characteristics for varying inertia characteristics. The main components of the adaptive neuro-controllers include an identification network and a controller network. Both these networks are trained using the backpropagation of error learning paradigm. To ensure robustness of the neuro-controller, an optimally connected neural network is synthesized for the identification network. For the online adaptive control problem, a new technique using a memory filter for error backpropagation is introduced. The performances of the nonlinear neuro-controllers for cases listed above are verified using a nonlinear simulation of the Space Station. Results presented substantiate the feasibility of using neural networks in robust nonlinear adaptive control of spacecraft.<<ETX>>\",\"PeriodicalId\":173370,\"journal\":{\"name\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1994.381353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

结合人工神经网络和非线性自适应控制的概念,研究了航天器姿态控制作为线性控制方法的替代方案。利用空间站自由度的非线性模型论证了神经控制器的两种功能。这些能力包括:1)利用神经网络合成鲁棒非线性控制器;2)自适应修改神经控制器特性以适应不同的惯性特性。自适应神经控制器的主要组成部分包括识别网络和控制器网络。这两种网络都使用错误学习范式的反向传播进行训练。为了保证神经控制器的鲁棒性,对辨识网络合成了最优连接的神经网络。针对在线自适应控制问题,提出了一种利用记忆滤波器进行误差反向传播的新方法。通过对空间站的非线性仿真,验证了上述情况下非线性神经控制器的性能。实验结果证明了神经网络在航天器鲁棒非线性自适应控制中的可行性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive neuro-control for spacecraft attitude control
The spacecraft attitude control which combines the concepts of artificial neural networks and nonlinear adaptive control, is investigated as an alternative to linear control approaches. Two capabilities of neuro-controllers are demonstrated using a nonlinear model of the Space Station Freedom. These capabilities are: 1) synthesis of robust nonlinear controllers using neural networks; and 2) adaptively modifying neuro-controller characteristics for varying inertia characteristics. The main components of the adaptive neuro-controllers include an identification network and a controller network. Both these networks are trained using the backpropagation of error learning paradigm. To ensure robustness of the neuro-controller, an optimally connected neural network is synthesized for the identification network. For the online adaptive control problem, a new technique using a memory filter for error backpropagation is introduced. The performances of the nonlinear neuro-controllers for cases listed above are verified using a nonlinear simulation of the Space Station. Results presented substantiate the feasibility of using neural networks in robust nonlinear adaptive control of spacecraft.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability issues in a disturbance attenuation based technique for manipulator control /spl mu/-optimal advanced PID control of an industrial high purity distillation column Robust controller design based on guaranteed cost control approach for rigid robots H/sub /spl infin// control of a flexible arm: coprime factors design using the gap metric Prediction in real-time control using adaptive networks with on-line learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1