知识图谱可视化:挑战、框架和实现

Rungsiman Nararatwong, N. Kertkeidkachorn, R. Ichise
{"title":"知识图谱可视化:挑战、框架和实现","authors":"Rungsiman Nararatwong, N. Kertkeidkachorn, R. Ichise","doi":"10.1109/AIKE48582.2020.00034","DOIUrl":null,"url":null,"abstract":"A knowledge graph (KG) is a rich resource representing real-world facts. Visualizing a knowledge graph helps humans gain a deep understanding of the facts, leading to new insights and concepts. However, the massive and complex nature of knowledge graphs has brought many longstanding challenges, especially to attract non-expert users. This paper discusses these challenges; we turned them into a generic knowledge-graph visualization framework, namely KGViz, consisting of four dimensions: modularity, intuitive user interface, performance, and access control. Our implementation of KGViz is a high-capacity, extendable, and scalable KG visualizer, which we designed to promotes community contributions.","PeriodicalId":370671,"journal":{"name":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Knowledge Graph Visualization: Challenges, Framework, and Implementation\",\"authors\":\"Rungsiman Nararatwong, N. Kertkeidkachorn, R. Ichise\",\"doi\":\"10.1109/AIKE48582.2020.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A knowledge graph (KG) is a rich resource representing real-world facts. Visualizing a knowledge graph helps humans gain a deep understanding of the facts, leading to new insights and concepts. However, the massive and complex nature of knowledge graphs has brought many longstanding challenges, especially to attract non-expert users. This paper discusses these challenges; we turned them into a generic knowledge-graph visualization framework, namely KGViz, consisting of four dimensions: modularity, intuitive user interface, performance, and access control. Our implementation of KGViz is a high-capacity, extendable, and scalable KG visualizer, which we designed to promotes community contributions.\",\"PeriodicalId\":370671,\"journal\":{\"name\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE48582.2020.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE48582.2020.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

知识图谱(KG)是代表现实世界事实的丰富资源。可视化知识图谱可以帮助人们深入了解事实,从而产生新的见解和概念。然而,知识图谱的庞大和复杂的特性带来了许多长期的挑战,特别是吸引非专业用户。本文讨论了这些挑战;我们将它们转化为一个通用的知识图可视化框架,即KGViz,由模块化、直观用户界面、性能和访问控制四个维度组成。我们的KGViz实现是一个高容量、可扩展和可伸缩的KG可视化器,我们设计它是为了促进社区的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Graph Visualization: Challenges, Framework, and Implementation
A knowledge graph (KG) is a rich resource representing real-world facts. Visualizing a knowledge graph helps humans gain a deep understanding of the facts, leading to new insights and concepts. However, the massive and complex nature of knowledge graphs has brought many longstanding challenges, especially to attract non-expert users. This paper discusses these challenges; we turned them into a generic knowledge-graph visualization framework, namely KGViz, consisting of four dimensions: modularity, intuitive user interface, performance, and access control. Our implementation of KGViz is a high-capacity, extendable, and scalable KG visualizer, which we designed to promotes community contributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence Design on Embedded Board with Edge Computing for Vehicle Applications Analysis of Permission Selection Techniques in Machine Learning-based Malicious App Detection Using Cultural Algorithms with Common Value Auctions to Provide Sustainability in Complex Dynamic Environments Knowledge Graph Visualization: Challenges, Framework, and Implementation Evaluation of Classification algorithms for Distributed Denial of Service Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1