{"title":"分割任意颜色的手","authors":"Xiaojin Zhu, Jie Yang, A. Waibel","doi":"10.1109/AFGR.2000.840673","DOIUrl":null,"url":null,"abstract":"Hand segmentation is a prerequisite for many gesture recognition tasks. Color has been widely used for hand segmentation. However, many approaches rely on predefined skin color models. It is very difficult to predefine a color model in a mobile application where the light condition may change dramatically over time. We propose a novel statistical approach to hand segmentation based on Bayes decision theory. The proposed method requires no predefined skin color model. Instead it generates a hand color model and a background color model for a given image, and uses these models to classify each pixel in the image as either a hand pixel or a background pixel. Models are generated using a Gaussian mixture model with the restricted EM algorithm. Our method is capable of segmenting hands of arbitrary color in a complex scene. It performs well even when there is a significant overlap between hand and background colors, or when the user wears gloves. We show that the Bayes decision method is superior to a commonly used method by comparing their upper bound performance. Experimental results demonstrate the feasibility of the proposed method.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":"{\"title\":\"Segmenting hands of arbitrary color\",\"authors\":\"Xiaojin Zhu, Jie Yang, A. Waibel\",\"doi\":\"10.1109/AFGR.2000.840673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand segmentation is a prerequisite for many gesture recognition tasks. Color has been widely used for hand segmentation. However, many approaches rely on predefined skin color models. It is very difficult to predefine a color model in a mobile application where the light condition may change dramatically over time. We propose a novel statistical approach to hand segmentation based on Bayes decision theory. The proposed method requires no predefined skin color model. Instead it generates a hand color model and a background color model for a given image, and uses these models to classify each pixel in the image as either a hand pixel or a background pixel. Models are generated using a Gaussian mixture model with the restricted EM algorithm. Our method is capable of segmenting hands of arbitrary color in a complex scene. It performs well even when there is a significant overlap between hand and background colors, or when the user wears gloves. We show that the Bayes decision method is superior to a commonly used method by comparing their upper bound performance. Experimental results demonstrate the feasibility of the proposed method.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"172\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hand segmentation is a prerequisite for many gesture recognition tasks. Color has been widely used for hand segmentation. However, many approaches rely on predefined skin color models. It is very difficult to predefine a color model in a mobile application where the light condition may change dramatically over time. We propose a novel statistical approach to hand segmentation based on Bayes decision theory. The proposed method requires no predefined skin color model. Instead it generates a hand color model and a background color model for a given image, and uses these models to classify each pixel in the image as either a hand pixel or a background pixel. Models are generated using a Gaussian mixture model with the restricted EM algorithm. Our method is capable of segmenting hands of arbitrary color in a complex scene. It performs well even when there is a significant overlap between hand and background colors, or when the user wears gloves. We show that the Bayes decision method is superior to a commonly used method by comparing their upper bound performance. Experimental results demonstrate the feasibility of the proposed method.