基于单个训练样本的人脸识别局部图嵌入判别分析

Jie Xu, Jian Yang
{"title":"基于单个训练样本的人脸识别局部图嵌入判别分析","authors":"Jie Xu, Jian Yang","doi":"10.1109/CCPR.2009.5344053","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient feature extraction technique called Local Graph Embedding Discriminant Analysis(LGEDA) is developed for solving One Sample per Person Problem. In our algorithm, a mean filter is used to generate imitated images and a double size new training set can be obtained. Taking the local neighborhood geometry structure and class labels into account, the proposed algorithm can maximize the local interclass separability as far as possible and preserve the local neighborhood relationships of the data set. After the local scatters and interclass scatter are characterized, the proposed method seeks to find a projection maximizing the local margin between of different classes under the constraint of local neighborhood preserving. Experiments show that our proposed method","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Local Graph Embedding Discriminant Analysis for Face Recognition with Single Training Sample Per Person\",\"authors\":\"Jie Xu, Jian Yang\",\"doi\":\"10.1109/CCPR.2009.5344053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient feature extraction technique called Local Graph Embedding Discriminant Analysis(LGEDA) is developed for solving One Sample per Person Problem. In our algorithm, a mean filter is used to generate imitated images and a double size new training set can be obtained. Taking the local neighborhood geometry structure and class labels into account, the proposed algorithm can maximize the local interclass separability as far as possible and preserve the local neighborhood relationships of the data set. After the local scatters and interclass scatter are characterized, the proposed method seeks to find a projection maximizing the local margin between of different classes under the constraint of local neighborhood preserving. Experiments show that our proposed method\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5344053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对“一人一样本”问题,提出了一种高效的特征提取技术——局部图嵌入判别分析(LGEDA)。在我们的算法中,使用均值滤波器生成模拟图像,可以得到一个双倍大小的新训练集。该算法考虑了局部邻域几何结构和类标号,可以最大限度地提高局部类间可分性,并保持数据集的局部邻域关系。在对局部散点和类间散点进行特征化处理后,在局部邻域保持约束下,寻求一种最大化不同类间局部边界的投影。实验证明了我们提出的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local Graph Embedding Discriminant Analysis for Face Recognition with Single Training Sample Per Person
In this paper, an efficient feature extraction technique called Local Graph Embedding Discriminant Analysis(LGEDA) is developed for solving One Sample per Person Problem. In our algorithm, a mean filter is used to generate imitated images and a double size new training set can be obtained. Taking the local neighborhood geometry structure and class labels into account, the proposed algorithm can maximize the local interclass separability as far as possible and preserve the local neighborhood relationships of the data set. After the local scatters and interclass scatter are characterized, the proposed method seeks to find a projection maximizing the local margin between of different classes under the constraint of local neighborhood preserving. Experiments show that our proposed method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Detection Based on Directional Rectangular Pattern and Adaptive Threshold Propagation in the Complex Background An Algorithm for Ellipse Detection Based on Geometry Color Image Segmentation Using Combined Information of Color and Texture Use Fukunaga-Koontz Transform to Solve Occlusion Problems in Multitarget Tracking A Discretization Algorithm of Continuous Attributes Based on Supervised Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1