基于LSTM的文本摘要深度学习模型

R. Vijaya Saraswathi, Ravi Varma Chunchu, Sushma Kunchala, Mahankali Varun, Tejashwini Begari, Saidivya Bodduru
{"title":"基于LSTM的文本摘要深度学习模型","authors":"R. Vijaya Saraswathi, Ravi Varma Chunchu, Sushma Kunchala, Mahankali Varun, Tejashwini Begari, Saidivya Bodduru","doi":"10.1109/ICECA55336.2022.10009541","DOIUrl":null,"url":null,"abstract":"As different users provide different reviews for a product/service, it has become increasingly difficult for common people to understand the customer reviews found on various apps or websites. People are sometimes too lazy to read reviews on various subjects all the way through before making a judgement, despite the fact that they can take time. Even if they wanted to, people cannot read every line of a review. As a result, a text summary model would greatly simplify this process. The purpose of a text summary is to draw out the most significant data from a long document and leave out any that are superfluous or uninteresting. This text summarizer will automatically produce a useful summary from reviews using LSTM. Sentences from the input text will be separated and converted into vectors. A material summary is a process of reducing a large body of text while preserving its original context. The summary should read easily. In this project, our goal is to create a model that accepts reviews of foods as input and outputs a summary of the review. This helps the people who are ordering the food if they want to know about the food that they are looking for.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A LSTM based Deep Learning Model for Text Summarization\",\"authors\":\"R. Vijaya Saraswathi, Ravi Varma Chunchu, Sushma Kunchala, Mahankali Varun, Tejashwini Begari, Saidivya Bodduru\",\"doi\":\"10.1109/ICECA55336.2022.10009541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As different users provide different reviews for a product/service, it has become increasingly difficult for common people to understand the customer reviews found on various apps or websites. People are sometimes too lazy to read reviews on various subjects all the way through before making a judgement, despite the fact that they can take time. Even if they wanted to, people cannot read every line of a review. As a result, a text summary model would greatly simplify this process. The purpose of a text summary is to draw out the most significant data from a long document and leave out any that are superfluous or uninteresting. This text summarizer will automatically produce a useful summary from reviews using LSTM. Sentences from the input text will be separated and converted into vectors. A material summary is a process of reducing a large body of text while preserving its original context. The summary should read easily. In this project, our goal is to create a model that accepts reviews of foods as input and outputs a summary of the review. This helps the people who are ordering the food if they want to know about the food that they are looking for.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于不同的用户对一个产品/服务的评价不同,普通人越来越难以理解各种应用程序或网站上的客户评价。人们有时太懒了,不愿意在做出判断之前从头到尾地阅读各种主题的评论,尽管他们可以花时间。即使他们想看,人们也不可能看完评论的每一行。因此,文本摘要模型将大大简化这一过程。文本摘要的目的是从一份冗长的文件中提取出最重要的数据,并删除任何多余或无趣的数据。这个文本摘要器将使用LSTM从评审中自动生成有用的摘要。输入文本中的句子将被分离并转换为向量。材料摘要是在保留其原始上下文的情况下减少大量文本的过程。摘要应该容易读懂。在这个项目中,我们的目标是创建一个模型,该模型接受对食品的评论作为输入,并输出评论摘要。这可以帮助点餐的人,如果他们想知道他们正在寻找的食物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A LSTM based Deep Learning Model for Text Summarization
As different users provide different reviews for a product/service, it has become increasingly difficult for common people to understand the customer reviews found on various apps or websites. People are sometimes too lazy to read reviews on various subjects all the way through before making a judgement, despite the fact that they can take time. Even if they wanted to, people cannot read every line of a review. As a result, a text summary model would greatly simplify this process. The purpose of a text summary is to draw out the most significant data from a long document and leave out any that are superfluous or uninteresting. This text summarizer will automatically produce a useful summary from reviews using LSTM. Sentences from the input text will be separated and converted into vectors. A material summary is a process of reducing a large body of text while preserving its original context. The summary should read easily. In this project, our goal is to create a model that accepts reviews of foods as input and outputs a summary of the review. This helps the people who are ordering the food if they want to know about the food that they are looking for.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Artificial Flora Algorithm Based Optimal Handover Scheme for LTE-Advanced Networks Named Entity Recognition using CRF with Active Learning Algorithm in English Texts FPGA Implementation of Lattice-Wave Half-Order Digital Integrator using Radix-$2^{r}$ Digit Recoding Green Cloud Computing- Next Step Towards Eco-friendly Work Stations Diabetes Prediction using Support Vector Machine, Naive Bayes and Random Forest Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1