DIVA-DAF:一个用于历史文档图像分析的深度学习框架

Lars Vögtlin, Anna Scius-Bertrand, Paul Maergner, Andreas Fischer, R. Ingold
{"title":"DIVA-DAF:一个用于历史文档图像分析的深度学习框架","authors":"Lars Vögtlin, Anna Scius-Bertrand, Paul Maergner, Andreas Fischer, R. Ingold","doi":"10.1145/3604951.3605511","DOIUrl":null,"url":null,"abstract":"Deep learning methods have shown strong performance in solving tasks for historical document image analysis. However, despite current libraries and frameworks, programming an experiment or a set of experiments and executing them can be time-consuming. This is why we propose an open-source deep learning framework, DIVA-DAF, which is based on PyTorch Lightning and specifically designed for historical document analysis. Pre-implemented tasks such as segmentation and classification can be easily used or customized. It is also easy to create one’s own tasks with the benefit of powerful modules for loading data, even large data sets, and different forms of ground truth. The applications conducted have demonstrated time savings for the programming of a document analysis task, as well as for different scenarios such as pre-training or changing the architecture. Thanks to its data module, the framework also allows to reduce the time of model training significantly.","PeriodicalId":375632,"journal":{"name":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DIVA-DAF: A Deep Learning Framework for Historical Document Image Analysis\",\"authors\":\"Lars Vögtlin, Anna Scius-Bertrand, Paul Maergner, Andreas Fischer, R. Ingold\",\"doi\":\"10.1145/3604951.3605511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methods have shown strong performance in solving tasks for historical document image analysis. However, despite current libraries and frameworks, programming an experiment or a set of experiments and executing them can be time-consuming. This is why we propose an open-source deep learning framework, DIVA-DAF, which is based on PyTorch Lightning and specifically designed for historical document analysis. Pre-implemented tasks such as segmentation and classification can be easily used or customized. It is also easy to create one’s own tasks with the benefit of powerful modules for loading data, even large data sets, and different forms of ground truth. The applications conducted have demonstrated time savings for the programming of a document analysis task, as well as for different scenarios such as pre-training or changing the architecture. Thanks to its data module, the framework also allows to reduce the time of model training significantly.\",\"PeriodicalId\":375632,\"journal\":{\"name\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604951.3605511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604951.3605511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习方法在解决历史文献图像分析任务方面表现出了很强的性能。然而,尽管有当前的库和框架,编写一个或一组实验并执行它们可能很耗时。这就是为什么我们提出了一个开源的深度学习框架,DIVA-DAF,它基于PyTorch闪电,专门为历史文档分析而设计。预先实现的任务,如分割和分类,可以很容易地使用或定制。它也很容易创建自己的任务,因为它有强大的模块来加载数据,甚至是大型数据集,以及不同形式的ground truth。所执行的应用程序已经证明了为文档分析任务的编程以及不同的场景(如预训练或更改体系结构)节省了时间。由于其数据模块,该框架还可以大大减少模型训练的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DIVA-DAF: A Deep Learning Framework for Historical Document Image Analysis
Deep learning methods have shown strong performance in solving tasks for historical document image analysis. However, despite current libraries and frameworks, programming an experiment or a set of experiments and executing them can be time-consuming. This is why we propose an open-source deep learning framework, DIVA-DAF, which is based on PyTorch Lightning and specifically designed for historical document analysis. Pre-implemented tasks such as segmentation and classification can be easily used or customized. It is also easy to create one’s own tasks with the benefit of powerful modules for loading data, even large data sets, and different forms of ground truth. The applications conducted have demonstrated time savings for the programming of a document analysis task, as well as for different scenarios such as pre-training or changing the architecture. Thanks to its data module, the framework also allows to reduce the time of model training significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gauging the Limitations of Natural Language Supervised Text-Image Metrics Learning by Iconclass Visual Concepts Laypa: A Novel Framework for Applying Segmentation Networks to Historical Documents Investigations on Self-supervised Learning for Script-, Font-type, and Location Classification on Historical Documents PapyTwin net: a Twin network for Greek letters detection on ancient Papyri Enhancing Named Entity Recognition for Holocaust Testimonies through Pseudo Labelling and Transformer-based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1