基于粗糙集的SVM分类器数据预处理算法

Zhiqi Huang, Jun Guo
{"title":"基于粗糙集的SVM分类器数据预处理算法","authors":"Zhiqi Huang, Jun Guo","doi":"10.1109/ICCSCE.2013.6720005","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) is now widely applied in various areas for its excellent performances. For a data set, usually we use normalization method to deal with the features. However, in many cases, the value of each feature is different. Thus, SVM can't work very well. In this paper, we propose a preprocessing algorithm based on rough set (RS) theory to give different weights on each feature, which can well reflect the value of each feature. The experimental results on real data show that the proposed approach can achieve a fairly improvement of classification accuracy.","PeriodicalId":319285,"journal":{"name":"2013 IEEE International Conference on Control System, Computing and Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A data preprocessing algorithm based on rough set for SVM classifier\",\"authors\":\"Zhiqi Huang, Jun Guo\",\"doi\":\"10.1109/ICCSCE.2013.6720005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine (SVM) is now widely applied in various areas for its excellent performances. For a data set, usually we use normalization method to deal with the features. However, in many cases, the value of each feature is different. Thus, SVM can't work very well. In this paper, we propose a preprocessing algorithm based on rough set (RS) theory to give different weights on each feature, which can well reflect the value of each feature. The experimental results on real data show that the proposed approach can achieve a fairly improvement of classification accuracy.\",\"PeriodicalId\":319285,\"journal\":{\"name\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control System, Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2013.6720005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control System, Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2013.6720005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

支持向量机(SVM)以其优异的性能被广泛应用于各个领域。对于一个数据集,我们通常使用归一化方法来处理特征。然而,在许多情况下,每个特性的价值是不同的。因此,支持向量机不能很好地工作。本文提出了一种基于粗糙集(RS)理论的预处理算法,对每个特征赋予不同的权重,可以很好地反映每个特征的值。在真实数据上的实验结果表明,该方法能较好地提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A data preprocessing algorithm based on rough set for SVM classifier
Support vector machine (SVM) is now widely applied in various areas for its excellent performances. For a data set, usually we use normalization method to deal with the features. However, in many cases, the value of each feature is different. Thus, SVM can't work very well. In this paper, we propose a preprocessing algorithm based on rough set (RS) theory to give different weights on each feature, which can well reflect the value of each feature. The experimental results on real data show that the proposed approach can achieve a fairly improvement of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital aerial imagery of unmanned aerial vehicle for various applications Performance study of preliminary mini anechoic chamber fitted with coconut shell coated absorbers A new approach for the design of relay control circuits Design of ultra wideband rectangular microstrip notched patch antenna Delay compensation using PID controller and GA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1