二维负折射率超材料的自然优化

D. Kwon, Zikri Bayraktar, D. Werner, U. Chettiar, A. Kildishev, V. Shalaev
{"title":"二维负折射率超材料的自然优化","authors":"D. Kwon, Zikri Bayraktar, D. Werner, U. Chettiar, A. Kildishev, V. Shalaev","doi":"10.1109/APS.2007.4395813","DOIUrl":null,"url":null,"abstract":"This paper applies two nature-based optimization techniques - the genetic algorithm (GA) in the work of Haupt and Haupt (2004) and particle swarm optimization (PSO) in the work of Kennedy and Eberhart (2001) - to the design of a two-dimensional IR-visible metamaterial using realistic bulk silver parameters by maximizing a properly-defined figure of merit.","PeriodicalId":117975,"journal":{"name":"2007 IEEE Antennas and Propagation Society International Symposium","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nature-based optimization of 2d negative-index metamaterials\",\"authors\":\"D. Kwon, Zikri Bayraktar, D. Werner, U. Chettiar, A. Kildishev, V. Shalaev\",\"doi\":\"10.1109/APS.2007.4395813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper applies two nature-based optimization techniques - the genetic algorithm (GA) in the work of Haupt and Haupt (2004) and particle swarm optimization (PSO) in the work of Kennedy and Eberhart (2001) - to the design of a two-dimensional IR-visible metamaterial using realistic bulk silver parameters by maximizing a properly-defined figure of merit.\",\"PeriodicalId\":117975,\"journal\":{\"name\":\"2007 IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2007.4395813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2007.4395813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将两种基于自然的优化技术——Haupt和Haupt(2004)工作中的遗传算法(GA)和Kennedy和Eberhart(2001)工作中的粒子群优化(PSO)——应用于利用实际体银参数通过最大化适当定义的价值值来设计二维红外可见超材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nature-based optimization of 2d negative-index metamaterials
This paper applies two nature-based optimization techniques - the genetic algorithm (GA) in the work of Haupt and Haupt (2004) and particle swarm optimization (PSO) in the work of Kennedy and Eberhart (2001) - to the design of a two-dimensional IR-visible metamaterial using realistic bulk silver parameters by maximizing a properly-defined figure of merit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The gap filler technology for mobile satellite system Numerical diffraction synthesis of 2-D quasioptical power splitter Development of a hemispherical near field antenna measurement range for use on a realistic ground Selective enhancement of mid-ir quantum dot electroluminescent emissions using defect mode photonic crystal cavities Engineering lossy artificial dielectrics using single-walled carbon nanotubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1