在基于位置的社交网络中跟踪群体运动

Sameera Kannangara, Hairuo Xie, E. Tanin, A. Harwood, S. Karunasekera
{"title":"在基于位置的社交网络中跟踪群体运动","authors":"Sameera Kannangara, Hairuo Xie, E. Tanin, A. Harwood, S. Karunasekera","doi":"10.1145/3397536.3422211","DOIUrl":null,"url":null,"abstract":"We study the problem of tracking the movement of groups using sparse trajectory data extracted from Location Based Social Networks (LBSNs). Tracking group movement using LBSN data is challenging because the data may contain a large amount of noise due to the lack of stability in group entity, spatial extent and posting time. We propose a first-of-its-kind solution, Group Kalman Filter (GKF), which aims to improve the effectiveness of group tracking by predicting the spatial properties of groups with a group movement model. Our experiments with real LBSN data and synthetic LBSN data show that GKF can detect groups and predict group movement with a high level of accuracy and efficiency.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tracking Group Movement in Location Based Social Networks\",\"authors\":\"Sameera Kannangara, Hairuo Xie, E. Tanin, A. Harwood, S. Karunasekera\",\"doi\":\"10.1145/3397536.3422211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of tracking the movement of groups using sparse trajectory data extracted from Location Based Social Networks (LBSNs). Tracking group movement using LBSN data is challenging because the data may contain a large amount of noise due to the lack of stability in group entity, spatial extent and posting time. We propose a first-of-its-kind solution, Group Kalman Filter (GKF), which aims to improve the effectiveness of group tracking by predicting the spatial properties of groups with a group movement model. Our experiments with real LBSN data and synthetic LBSN data show that GKF can detect groups and predict group movement with a high level of accuracy and efficiency.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了利用从基于位置的社交网络(LBSNs)中提取的稀疏轨迹数据来跟踪群体运动的问题。由于群体实体、空间范围和发布时间不稳定,数据可能包含大量的噪声,因此利用LBSN数据跟踪群体运动具有挑战性。我们提出了一种首创的解决方案,群体卡尔曼滤波(GKF),旨在通过使用群体运动模型预测群体的空间特性来提高群体跟踪的有效性。我们对真实LBSN数据和合成LBSN数据的实验表明,GKF能够以较高的精度和效率检测群体并预测群体的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking Group Movement in Location Based Social Networks
We study the problem of tracking the movement of groups using sparse trajectory data extracted from Location Based Social Networks (LBSNs). Tracking group movement using LBSN data is challenging because the data may contain a large amount of noise due to the lack of stability in group entity, spatial extent and posting time. We propose a first-of-its-kind solution, Group Kalman Filter (GKF), which aims to improve the effectiveness of group tracking by predicting the spatial properties of groups with a group movement model. Our experiments with real LBSN data and synthetic LBSN data show that GKF can detect groups and predict group movement with a high level of accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1