利用新颖性分类从Twitter收集网络威胁情报

Ba-Dung Le, Guanhua Wang, Mehwish Nasim, M. Babar
{"title":"利用新颖性分类从Twitter收集网络威胁情报","authors":"Ba-Dung Le, Guanhua Wang, Mehwish Nasim, M. Babar","doi":"10.1109/CW.2019.00058","DOIUrl":null,"url":null,"abstract":"Preventing organizations from Cyber exploits needs timely intelligence about Cyber vulnerabilities and attacks, referred to as threats. Cyber threat intelligence can be extracted from various sources including social media platforms where users publish the threat information in real-time. Gathering Cyber threat intelligence from social media sites is a time-consuming task for security analysts that can delay timely response to emerging Cyber threats. We propose a framework for automatically gathering Cyber threat intelligence from Twitter by using a novelty detection model. Our model learns the features of Cyber threat intelligence from the threat descriptions published in public repositories such as Common Vulnerabilities and Exposures (CVE) and classifies a new unseen tweet as either normal or anomalous to Cyber threat intelligence. We evaluate our framework using a purpose-built data set of tweets from 50 influential Cyber security-related accounts over twelve months (in 2018). Our classifier achieves the F1-score of 0.643 for classifying Cyber threat tweets and outperforms several baselines including binary classification models. Analysis of the classification results suggests that Cyber threat-relevant tweets on Twitter do not often include the CVE identifier of the related threats. Hence, it would be valuable to collect these tweets and associate them with the related CVE identifier for Cyber security applications.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Gathering Cyber Threat Intelligence from Twitter Using Novelty Classification\",\"authors\":\"Ba-Dung Le, Guanhua Wang, Mehwish Nasim, M. Babar\",\"doi\":\"10.1109/CW.2019.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preventing organizations from Cyber exploits needs timely intelligence about Cyber vulnerabilities and attacks, referred to as threats. Cyber threat intelligence can be extracted from various sources including social media platforms where users publish the threat information in real-time. Gathering Cyber threat intelligence from social media sites is a time-consuming task for security analysts that can delay timely response to emerging Cyber threats. We propose a framework for automatically gathering Cyber threat intelligence from Twitter by using a novelty detection model. Our model learns the features of Cyber threat intelligence from the threat descriptions published in public repositories such as Common Vulnerabilities and Exposures (CVE) and classifies a new unseen tweet as either normal or anomalous to Cyber threat intelligence. We evaluate our framework using a purpose-built data set of tweets from 50 influential Cyber security-related accounts over twelve months (in 2018). Our classifier achieves the F1-score of 0.643 for classifying Cyber threat tweets and outperforms several baselines including binary classification models. Analysis of the classification results suggests that Cyber threat-relevant tweets on Twitter do not often include the CVE identifier of the related threats. Hence, it would be valuable to collect these tweets and associate them with the related CVE identifier for Cyber security applications.\",\"PeriodicalId\":117409,\"journal\":{\"name\":\"2019 International Conference on Cyberworlds (CW)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2019.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

为了防止组织受到网络攻击,需要及时获得有关网络漏洞和攻击(即威胁)的情报。网络威胁情报可以从各种来源提取,包括用户实时发布威胁信息的社交媒体平台。对于安全分析师来说,从社交媒体网站收集网络威胁情报是一项耗时的任务,可能会延迟对新出现的网络威胁的及时响应。本文提出了一种利用新颖性检测模型自动收集Twitter网络威胁情报的框架。我们的模型从公共存储库(如Common Vulnerabilities and Exposures, CVE)中发布的威胁描述中学习网络威胁情报的特征,并将一条新的未见过的推文分类为正常或异常的网络威胁情报。我们使用专门构建的数据集来评估我们的框架,这些数据集来自50个有影响力的网络安全相关账户,历时12个月(2018年)。我们的分类器对网络威胁推文进行分类的f1得分为0.643,并且优于包括二元分类模型在内的几个基线。对分类结果的分析表明,Twitter上与网络威胁相关的推文通常不包含相关威胁的CVE标识符。因此,收集这些tweet并将它们与网络安全应用程序的相关CVE标识符关联起来是很有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gathering Cyber Threat Intelligence from Twitter Using Novelty Classification
Preventing organizations from Cyber exploits needs timely intelligence about Cyber vulnerabilities and attacks, referred to as threats. Cyber threat intelligence can be extracted from various sources including social media platforms where users publish the threat information in real-time. Gathering Cyber threat intelligence from social media sites is a time-consuming task for security analysts that can delay timely response to emerging Cyber threats. We propose a framework for automatically gathering Cyber threat intelligence from Twitter by using a novelty detection model. Our model learns the features of Cyber threat intelligence from the threat descriptions published in public repositories such as Common Vulnerabilities and Exposures (CVE) and classifies a new unseen tweet as either normal or anomalous to Cyber threat intelligence. We evaluate our framework using a purpose-built data set of tweets from 50 influential Cyber security-related accounts over twelve months (in 2018). Our classifier achieves the F1-score of 0.643 for classifying Cyber threat tweets and outperforms several baselines including binary classification models. Analysis of the classification results suggests that Cyber threat-relevant tweets on Twitter do not often include the CVE identifier of the related threats. Hence, it would be valuable to collect these tweets and associate them with the related CVE identifier for Cyber security applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG-Based Human Factors Evaluation of Air Traffic Control Operators (ATCOs) for Optimal Training Multi-instance Cancelable Biometric System using Convolutional Neural Network How does Augmented Reality Improve the Play Experience in Current Augmented Reality Enhanced Smartphone Games? Detection of Humanoid Robot Design Preferences Using EEG and Eye Tracker Vulnerability of Adaptive Strategies of Keystroke Dynamics Based Authentication Against Different Attack Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1