快速和节省空间的虚拟机检查点

Eunbyung Park, Bernhard Egger, Jaejin Lee
{"title":"快速和节省空间的虚拟机检查点","authors":"Eunbyung Park, Bernhard Egger, Jaejin Lee","doi":"10.1145/1952682.1952694","DOIUrl":null,"url":null,"abstract":"Checkpointing, i.e., recording the volatile state of a virtual machine (VM) running as a guest in a virtual machine monitor (VMM) for later restoration, includes storing the memory available to the VM. Typically, a full image of the VM's memory along with processor and device states are recorded. With guest memory sizes of up to several gigabytes, the size of the checkpoint images becomes more and more of a concern.\n In this work we present a technique for fast and space-efficient checkpointing of virtual machines. In contrast to existing methods, our technique eliminates redundant data and stores only a subset of the VM's memory pages. Our technique transparently tracks I/O operations of the guest to external storage and maintains a list of memory pages whose contents are duplicated on non-volatile storage. At a checkpoint, these pages are excluded from the checkpoint image.\n We have implemented the proposed technique for paravirtualized as well as fully-virtualized guests in the Xen VMM. Our experiments with a paravirtualized guest (Linux) and two fullyvirtualized guests (Linux, Windows) show a significant reduction in the size of the checkpoint image as well as the time required to complete the checkpoint. Compared to the current Xen implementation, we achieve, on average, an 81% reduction in the stored data and a 74% reduction in the time required to take a checkpoint for the paravirtualized Linux guest. In a fully-virtualized environment runningWindows and Linux guests, we achieve a 64% reduction of the image size along with a 62% reduction in checkpointing time.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Fast and space-efficient virtual machine checkpointing\",\"authors\":\"Eunbyung Park, Bernhard Egger, Jaejin Lee\",\"doi\":\"10.1145/1952682.1952694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Checkpointing, i.e., recording the volatile state of a virtual machine (VM) running as a guest in a virtual machine monitor (VMM) for later restoration, includes storing the memory available to the VM. Typically, a full image of the VM's memory along with processor and device states are recorded. With guest memory sizes of up to several gigabytes, the size of the checkpoint images becomes more and more of a concern.\\n In this work we present a technique for fast and space-efficient checkpointing of virtual machines. In contrast to existing methods, our technique eliminates redundant data and stores only a subset of the VM's memory pages. Our technique transparently tracks I/O operations of the guest to external storage and maintains a list of memory pages whose contents are duplicated on non-volatile storage. At a checkpoint, these pages are excluded from the checkpoint image.\\n We have implemented the proposed technique for paravirtualized as well as fully-virtualized guests in the Xen VMM. Our experiments with a paravirtualized guest (Linux) and two fullyvirtualized guests (Linux, Windows) show a significant reduction in the size of the checkpoint image as well as the time required to complete the checkpoint. Compared to the current Xen implementation, we achieve, on average, an 81% reduction in the stored data and a 74% reduction in the time required to take a checkpoint for the paravirtualized Linux guest. In a fully-virtualized environment runningWindows and Linux guests, we achieve a 64% reduction of the image size along with a 62% reduction in checkpointing time.\",\"PeriodicalId\":202844,\"journal\":{\"name\":\"International Conference on Virtual Execution Environments\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Virtual Execution Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1952682.1952694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1952682.1952694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

检查点,即在虚拟机监视器(VMM)中记录作为客户机运行的虚拟机(VM)的不稳定状态,以便以后恢复,包括存储VM可用的内存。通常,会记录VM内存的完整映像以及处理器和设备状态。由于来宾内存的大小高达几gb,检查点映像的大小变得越来越令人担忧。在这项工作中,我们提出了一种快速和节省空间的虚拟机检查点技术。与现有方法相比,我们的技术消除了冗余数据,并且只存储VM内存页的一个子集。我们的技术透明地跟踪客户机到外部存储的I/O操作,并维护一个内存页面列表,这些页面的内容在非易失性存储中重复。在检查点,这些页面将从检查点映像中排除。我们已经在Xen VMM中为半虚拟化和完全虚拟化的客户机实现了所建议的技术。我们对一个半虚拟化的客户机(Linux)和两个完全虚拟化的客户机(Linux、Windows)进行的实验表明,检查点映像的大小和完成检查点所需的时间都显著减少。与当前的Xen实现相比,我们平均减少了81%的存储数据,为半虚拟化的Linux客户机设置检查点所需的时间减少了74%。在运行windows和Linux客户机的完全虚拟化环境中,我们将映像大小减少了64%,检查点时间减少了62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and space-efficient virtual machine checkpointing
Checkpointing, i.e., recording the volatile state of a virtual machine (VM) running as a guest in a virtual machine monitor (VMM) for later restoration, includes storing the memory available to the VM. Typically, a full image of the VM's memory along with processor and device states are recorded. With guest memory sizes of up to several gigabytes, the size of the checkpoint images becomes more and more of a concern. In this work we present a technique for fast and space-efficient checkpointing of virtual machines. In contrast to existing methods, our technique eliminates redundant data and stores only a subset of the VM's memory pages. Our technique transparently tracks I/O operations of the guest to external storage and maintains a list of memory pages whose contents are duplicated on non-volatile storage. At a checkpoint, these pages are excluded from the checkpoint image. We have implemented the proposed technique for paravirtualized as well as fully-virtualized guests in the Xen VMM. Our experiments with a paravirtualized guest (Linux) and two fullyvirtualized guests (Linux, Windows) show a significant reduction in the size of the checkpoint image as well as the time required to complete the checkpoint. Compared to the current Xen implementation, we achieve, on average, an 81% reduction in the stored data and a 74% reduction in the time required to take a checkpoint for the paravirtualized Linux guest. In a fully-virtualized environment runningWindows and Linux guests, we achieve a 64% reduction of the image size along with a 62% reduction in checkpointing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shrinking the hypervisor one subsystem at a time: a userspace packet switch for virtual machines A fast abstract syntax tree interpreter for R DBILL: an efficient and retargetable dynamic binary instrumentation framework using llvm backend Ginseng: market-driven memory allocation Tesseract: reconciling guest I/O and hypervisor swapping in a VM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1