基于内磁通测量的感应电机故障诊断

Khalid I. Saad, G. Mirzaeva
{"title":"基于内磁通测量的感应电机故障诊断","authors":"Khalid I. Saad, G. Mirzaeva","doi":"10.1109/ICIT.2014.6894939","DOIUrl":null,"url":null,"abstract":"A new fault diagnosis scheme based on the monitoring of main air gap flux of squirrel cage induction motors is proposed. Most of the existing flux monitoring techniques are based on the leakage or stray flux measurement outside of the motor. A few methods, however, use the main air gap flux as the fault signature, where search coils are used to monitor the derivative of the flux, which eventually introduces noise in the signal. Moreover, the diagnosis methods are mainly based on detecting a fault, whereas very little initiative has been taken to locate a fault precisely. To address these problems, a sophisticated yet robust condition monitoring and fault diagnosis method is needed. To this aim, we propose to monitor the main air gap flux using Hall Effect Flux Sensors (HEFS) at all the stator slots of an induction motor, which can be used to address the stator and rotor slot effects not only through frequency analysis of the magnetic flux, but also by magnitude and phase shift comparison of sensors located at different geometric positions around the stator. We have successfully detected the stator turn-to-turn fault at a very incipient stage and detected the location of the fault precisely. Promising results have been obtained through simulation in the case of broken rotor bar faults as well.","PeriodicalId":240337,"journal":{"name":"2014 IEEE International Conference on Industrial Technology (ICIT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Fault diagnostics of induction motors based on internal flux measurement\",\"authors\":\"Khalid I. Saad, G. Mirzaeva\",\"doi\":\"10.1109/ICIT.2014.6894939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new fault diagnosis scheme based on the monitoring of main air gap flux of squirrel cage induction motors is proposed. Most of the existing flux monitoring techniques are based on the leakage or stray flux measurement outside of the motor. A few methods, however, use the main air gap flux as the fault signature, where search coils are used to monitor the derivative of the flux, which eventually introduces noise in the signal. Moreover, the diagnosis methods are mainly based on detecting a fault, whereas very little initiative has been taken to locate a fault precisely. To address these problems, a sophisticated yet robust condition monitoring and fault diagnosis method is needed. To this aim, we propose to monitor the main air gap flux using Hall Effect Flux Sensors (HEFS) at all the stator slots of an induction motor, which can be used to address the stator and rotor slot effects not only through frequency analysis of the magnetic flux, but also by magnitude and phase shift comparison of sensors located at different geometric positions around the stator. We have successfully detected the stator turn-to-turn fault at a very incipient stage and detected the location of the fault precisely. Promising results have been obtained through simulation in the case of broken rotor bar faults as well.\",\"PeriodicalId\":240337,\"journal\":{\"name\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.6894939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.6894939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种基于监测鼠笼式异步电动机主气隙磁通的故障诊断方案。现有的磁链监测技术大多是基于电机外部的泄漏或杂散磁链测量。然而,一些方法使用主气隙磁通作为故障特征,其中搜索线圈用于监测磁通的导数,最终在信号中引入噪声。此外,诊断方法主要是基于对故障的检测,而很少主动地对故障进行精确定位。为了解决这些问题,需要一种复杂而鲁棒的状态监测和故障诊断方法。为此,我们提出在感应电机的所有定子槽中使用霍尔效应磁通传感器(HEFS)来监测主气隙磁通,不仅可以通过磁通的频率分析,还可以通过放置在定子周围不同几何位置的传感器的幅度和相移比较来解决定子和转子槽效应。我们成功地在很早期的阶段检测出了定子匝间故障,并精确地检测出了故障的位置。通过对转子断条故障的仿真,也得到了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnostics of induction motors based on internal flux measurement
A new fault diagnosis scheme based on the monitoring of main air gap flux of squirrel cage induction motors is proposed. Most of the existing flux monitoring techniques are based on the leakage or stray flux measurement outside of the motor. A few methods, however, use the main air gap flux as the fault signature, where search coils are used to monitor the derivative of the flux, which eventually introduces noise in the signal. Moreover, the diagnosis methods are mainly based on detecting a fault, whereas very little initiative has been taken to locate a fault precisely. To address these problems, a sophisticated yet robust condition monitoring and fault diagnosis method is needed. To this aim, we propose to monitor the main air gap flux using Hall Effect Flux Sensors (HEFS) at all the stator slots of an induction motor, which can be used to address the stator and rotor slot effects not only through frequency analysis of the magnetic flux, but also by magnitude and phase shift comparison of sensors located at different geometric positions around the stator. We have successfully detected the stator turn-to-turn fault at a very incipient stage and detected the location of the fault precisely. Promising results have been obtained through simulation in the case of broken rotor bar faults as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Line tracking control of a two-wheel balancing mobile robot: Experimental studies Ultra-small transformer using insulated hybrid structure for AC adapters of smart devices Robust voltage regulation of DC-DC PWM based buck-boost converter The best practices of engineering regionalization Online identification and tuning method of static & dynamic inductance of IPMSM for fine position sensorless control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1