agv的设计:建模、路径规划和定位

Qi Sun, Hui Liu, Qiang Yang, W. Yan
{"title":"agv的设计:建模、路径规划和定位","authors":"Qi Sun, Hui Liu, Qiang Yang, W. Yan","doi":"10.1109/ICMA.2011.5985974","DOIUrl":null,"url":null,"abstract":"Intelligent warehouse becomes a key component of logistics process automation, which essentially promotes the productivity and cost reduction. This paper presents a novel design solution of an Automated Guided Vehicles (AGVs) system for intelligent warehouse. An improved version of classical Dijkstra shortest-path algorithm is proposed for efficient global path planning. In the case of multi-AGV, the time windows method is used to address the issue of conflict and deadlock. In addition, the local path planning and auto-localization is addressed by using a heuristics-based algorithm and Monte Carlo Localization algorithm respectively. Extensive numerical experiments based on Player/Stage simulator are carried out to assess the suggested algorithms, for a range of scenarios and the result well validates its effectiveness. Currently the proposed design solution is adopted in developing the prototype of AGVs to be deployed in practice.","PeriodicalId":317730,"journal":{"name":"2011 IEEE International Conference on Mechatronics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On the design for AGVs: Modeling, path planning and localization\",\"authors\":\"Qi Sun, Hui Liu, Qiang Yang, W. Yan\",\"doi\":\"10.1109/ICMA.2011.5985974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent warehouse becomes a key component of logistics process automation, which essentially promotes the productivity and cost reduction. This paper presents a novel design solution of an Automated Guided Vehicles (AGVs) system for intelligent warehouse. An improved version of classical Dijkstra shortest-path algorithm is proposed for efficient global path planning. In the case of multi-AGV, the time windows method is used to address the issue of conflict and deadlock. In addition, the local path planning and auto-localization is addressed by using a heuristics-based algorithm and Monte Carlo Localization algorithm respectively. Extensive numerical experiments based on Player/Stage simulator are carried out to assess the suggested algorithms, for a range of scenarios and the result well validates its effectiveness. Currently the proposed design solution is adopted in developing the prototype of AGVs to be deployed in practice.\",\"PeriodicalId\":317730,\"journal\":{\"name\":\"2011 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2011.5985974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2011.5985974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

智能仓库成为物流过程自动化的重要组成部分,从本质上促进了生产效率和成本的降低。提出了一种智能仓库自动导引车(agv)系统的设计方案。为了实现高效的全局路径规划,提出了一种改进的经典Dijkstra最短路径算法。在多agv情况下,采用时间窗方法解决了冲突和死锁问题。此外,采用启发式算法和蒙特卡罗定位算法分别解决了局部路径规划和自动定位问题。基于玩家/舞台模拟器进行了大量的数值实验来评估所建议的算法,并在一系列场景中进行了测试,结果很好地验证了其有效性。目前,该设计方案已应用于agv样机的研制和实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the design for AGVs: Modeling, path planning and localization
Intelligent warehouse becomes a key component of logistics process automation, which essentially promotes the productivity and cost reduction. This paper presents a novel design solution of an Automated Guided Vehicles (AGVs) system for intelligent warehouse. An improved version of classical Dijkstra shortest-path algorithm is proposed for efficient global path planning. In the case of multi-AGV, the time windows method is used to address the issue of conflict and deadlock. In addition, the local path planning and auto-localization is addressed by using a heuristics-based algorithm and Monte Carlo Localization algorithm respectively. Extensive numerical experiments based on Player/Stage simulator are carried out to assess the suggested algorithms, for a range of scenarios and the result well validates its effectiveness. Currently the proposed design solution is adopted in developing the prototype of AGVs to be deployed in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the tele-operation robot system with tele-presence A review: The control strategies of synchronized switching damping technique Mechanical and control design of caster for low vibrations and crashes of carts Tracking control of mobile robot using ANFIS Development of a novel rotor-embedded-type multidegree-of-freedom spherical ultrasonic motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1