基于序列稀疏恢复的多测量向量稀疏矩阵重构

Xingyu He, Tao Liu
{"title":"基于序列稀疏恢复的多测量向量稀疏矩阵重构","authors":"Xingyu He, Tao Liu","doi":"10.1109/ICCCS52626.2021.9449312","DOIUrl":null,"url":null,"abstract":"This paper considers recovery of two-dimensional (2D) sparse signals from incomplete measurements. The 2D sparse signals can be reconstructed by solving a sparse representation problem for Multiple Measurement Vectors (MMV). However, the extension of the sparse recovery algorithms to the MMV case may be inefficient if the vectors do not have the same sparsity profile. In this paper, a sequential sparse recovery (SSR) algorithm is proposed to reconstruct the two-dimensional (2D) sparse matrix. The sparsity of the matrix is much reduced after down-sampling observation and the sparse matrix can be reconstructed after sequential observations and reconstructions. Simulation results verify the effectiveness of the proposed method in 2D sparse signal reconstruction.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Matrix Reconstruction Based on Sequential Sparse Recovery for Multiple Measurement Vectors\",\"authors\":\"Xingyu He, Tao Liu\",\"doi\":\"10.1109/ICCCS52626.2021.9449312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers recovery of two-dimensional (2D) sparse signals from incomplete measurements. The 2D sparse signals can be reconstructed by solving a sparse representation problem for Multiple Measurement Vectors (MMV). However, the extension of the sparse recovery algorithms to the MMV case may be inefficient if the vectors do not have the same sparsity profile. In this paper, a sequential sparse recovery (SSR) algorithm is proposed to reconstruct the two-dimensional (2D) sparse matrix. The sparsity of the matrix is much reduced after down-sampling observation and the sparse matrix can be reconstructed after sequential observations and reconstructions. Simulation results verify the effectiveness of the proposed method in 2D sparse signal reconstruction.\",\"PeriodicalId\":376290,\"journal\":{\"name\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS52626.2021.9449312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究二维(2D)稀疏信号从不完全测量中恢复的问题。通过求解多测量向量(MMV)的稀疏表示问题,实现二维稀疏信号的重构。然而,将稀疏恢复算法扩展到MMV情况下,如果向量不具有相同的稀疏性特征,则可能效率低下。本文提出了一种序列稀疏恢复(SSR)算法来重建二维稀疏矩阵。下采样观测大大降低了稀疏矩阵的稀疏性,通过序贯观测和重构可以重构稀疏矩阵。仿真结果验证了该方法在二维稀疏信号重构中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Matrix Reconstruction Based on Sequential Sparse Recovery for Multiple Measurement Vectors
This paper considers recovery of two-dimensional (2D) sparse signals from incomplete measurements. The 2D sparse signals can be reconstructed by solving a sparse representation problem for Multiple Measurement Vectors (MMV). However, the extension of the sparse recovery algorithms to the MMV case may be inefficient if the vectors do not have the same sparsity profile. In this paper, a sequential sparse recovery (SSR) algorithm is proposed to reconstruct the two-dimensional (2D) sparse matrix. The sparsity of the matrix is much reduced after down-sampling observation and the sparse matrix can be reconstructed after sequential observations and reconstructions. Simulation results verify the effectiveness of the proposed method in 2D sparse signal reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Measuring Data Fusion Based on EMBET Real Time Noise Power Estimation for Single Carrier Frequency Domain Equalization The CPDA Detector for the MIMO OCDM System A Cooperative Search Algorithm Based on Improved Particle Swarm Optimization Decision for UAV Swarm A Network Topology Awareness Based Probabilistic Broadcast Protocol for Data Transmission in Mobile Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1