{"title":"磁悬浮系统参数不确定性的处理","authors":"K. Shafiq, H. Z. Bukhari, S. Ahmed, A. I. Bhatti","doi":"10.1109/INMIC.2008.4777711","DOIUrl":null,"url":null,"abstract":"Controller design for magnetic levitation systems is considered problematic due to the parametric uncertainties in mass, strong disturbance forces between the magnets, and noise effects inflowing from sensor, and input channels. In this paper, an LMI based solution is proposed for the position tracking problem of a magnetic levitation system in the presence of parametric uncertainties. Moreover the effect of disturbance has also been canceled successfully. The problem will be posed in LMI using state-feedback H-infinity approach and an efficient solution to multiple specifications arising during linearization will be targeted. The formation of affine parameterized model of a Magnetic Levitation System to incorporate parametric variations and its subsequent robust controller design with rig implementation is the novel aspect of this work.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coping with parametric uncertainties in magnetic levitation system\",\"authors\":\"K. Shafiq, H. Z. Bukhari, S. Ahmed, A. I. Bhatti\",\"doi\":\"10.1109/INMIC.2008.4777711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controller design for magnetic levitation systems is considered problematic due to the parametric uncertainties in mass, strong disturbance forces between the magnets, and noise effects inflowing from sensor, and input channels. In this paper, an LMI based solution is proposed for the position tracking problem of a magnetic levitation system in the presence of parametric uncertainties. Moreover the effect of disturbance has also been canceled successfully. The problem will be posed in LMI using state-feedback H-infinity approach and an efficient solution to multiple specifications arising during linearization will be targeted. The formation of affine parameterized model of a Magnetic Levitation System to incorporate parametric variations and its subsequent robust controller design with rig implementation is the novel aspect of this work.\",\"PeriodicalId\":112530,\"journal\":{\"name\":\"2008 IEEE International Multitopic Conference\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2008.4777711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coping with parametric uncertainties in magnetic levitation system
Controller design for magnetic levitation systems is considered problematic due to the parametric uncertainties in mass, strong disturbance forces between the magnets, and noise effects inflowing from sensor, and input channels. In this paper, an LMI based solution is proposed for the position tracking problem of a magnetic levitation system in the presence of parametric uncertainties. Moreover the effect of disturbance has also been canceled successfully. The problem will be posed in LMI using state-feedback H-infinity approach and an efficient solution to multiple specifications arising during linearization will be targeted. The formation of affine parameterized model of a Magnetic Levitation System to incorporate parametric variations and its subsequent robust controller design with rig implementation is the novel aspect of this work.