基于熵随机共振和量子神经网络的受限人群动力学模型

V. Ivancevic, D. Reid
{"title":"基于熵随机共振和量子神经网络的受限人群动力学模型","authors":"V. Ivancevic, D. Reid","doi":"10.1504/IJIDSS.2009.031413","DOIUrl":null,"url":null,"abstract":"We present a new approach to modelling dynamics of confined crowds driven by Entropic Stochastic Resonance (ESR). The standard approach is to model confined Brownian particles using overdamped Langevin equations and corresponding linear, real-time, Fokker-Planck equations for Probability Density Functions (PDFs). Instead, we propose a new approach based on a set of (weakly or strongly) coupled Quantum Neural Networks (QNNs), which are self-organised, complex-valued nonlinear Schrodinger equations with unsupervised Hebbian-type learning. Utilising the full power of nonlinear analysis in the complex-plane, the new approach promises to be ideal for any kind of two-dimensional terrains. Besides, instead of over-simplistic Brownian particles, the new approach allows us to model crowds consisting of rigid-body-type agents.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Dynamics of confined crowds modelled using Entropic Stochastic Resonance and Quantum Neural Networks\",\"authors\":\"V. Ivancevic, D. Reid\",\"doi\":\"10.1504/IJIDSS.2009.031413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach to modelling dynamics of confined crowds driven by Entropic Stochastic Resonance (ESR). The standard approach is to model confined Brownian particles using overdamped Langevin equations and corresponding linear, real-time, Fokker-Planck equations for Probability Density Functions (PDFs). Instead, we propose a new approach based on a set of (weakly or strongly) coupled Quantum Neural Networks (QNNs), which are self-organised, complex-valued nonlinear Schrodinger equations with unsupervised Hebbian-type learning. Utilising the full power of nonlinear analysis in the complex-plane, the new approach promises to be ideal for any kind of two-dimensional terrains. Besides, instead of over-simplistic Brownian particles, the new approach allows us to model crowds consisting of rigid-body-type agents.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2009.031413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2009.031413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种由熵随机共振(ESR)驱动的受限人群动力学建模的新方法。标准的方法是用过阻尼朗格万方程和相应的线性、实时、福克-普朗克概率密度函数方程(pdf)来模拟受限布朗粒子。相反,我们提出了一种基于一组(弱或强)耦合量子神经网络(QNNs)的新方法,QNNs是具有无监督hebbian型学习的自组织复值非线性薛定谔方程。利用复杂平面中非线性分析的全部力量,新方法有望成为任何一种二维地形的理想方法。此外,与过于简单的布朗粒子不同,新方法允许我们对由刚体型主体组成的群体进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of confined crowds modelled using Entropic Stochastic Resonance and Quantum Neural Networks
We present a new approach to modelling dynamics of confined crowds driven by Entropic Stochastic Resonance (ESR). The standard approach is to model confined Brownian particles using overdamped Langevin equations and corresponding linear, real-time, Fokker-Planck equations for Probability Density Functions (PDFs). Instead, we propose a new approach based on a set of (weakly or strongly) coupled Quantum Neural Networks (QNNs), which are self-organised, complex-valued nonlinear Schrodinger equations with unsupervised Hebbian-type learning. Utilising the full power of nonlinear analysis in the complex-plane, the new approach promises to be ideal for any kind of two-dimensional terrains. Besides, instead of over-simplistic Brownian particles, the new approach allows us to model crowds consisting of rigid-body-type agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning-based approach for malware classification A novel approach to design a digital clock triggered modified pulse latch for 16-bit shift register Program viewer - a defence portfolio capability management system Archival solution API to upload bulk file and managing the data in cloud storage Face recognition under occlusion for user authentication and invigilation in remotely distributed online assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1