基于加权稀疏表示的视觉跟踪

Du Xiping, Liu Jiafeng, Tang Xianglong
{"title":"基于加权稀疏表示的视觉跟踪","authors":"Du Xiping, Liu Jiafeng, Tang Xianglong","doi":"10.1109/ICAIOT.2015.7111543","DOIUrl":null,"url":null,"abstract":"Recently, sparse representation has been used in visual tracking, and related trackers have emerged. However, such sparse representation is not stable and has the potential to represent a candidate with dissimilar target templates. Therefore, a new tracker based weighted sparse representation (WSRT) is proposed. Specifically, to represent a candidate, each target template is weighted according to its similarity to the candidate. The bigger the similarity is, the bigger the probability of the target template to be chosen will be. The proposed tracker chooses the similar target templates to represent each candidate and reflects the locality structure between the candidate and target templates. Experimental results show that the proposed tracker has excellent performance.","PeriodicalId":310429,"journal":{"name":"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual tracking via weighted sparse representation\",\"authors\":\"Du Xiping, Liu Jiafeng, Tang Xianglong\",\"doi\":\"10.1109/ICAIOT.2015.7111543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, sparse representation has been used in visual tracking, and related trackers have emerged. However, such sparse representation is not stable and has the potential to represent a candidate with dissimilar target templates. Therefore, a new tracker based weighted sparse representation (WSRT) is proposed. Specifically, to represent a candidate, each target template is weighted according to its similarity to the candidate. The bigger the similarity is, the bigger the probability of the target template to be chosen will be. The proposed tracker chooses the similar target templates to represent each candidate and reflects the locality structure between the candidate and target templates. Experimental results show that the proposed tracker has excellent performance.\",\"PeriodicalId\":310429,\"journal\":{\"name\":\"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIOT.2015.7111543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIOT.2015.7111543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,稀疏表示被用于视觉跟踪,并出现了相关的跟踪器。然而,这种稀疏表示并不稳定,并且有可能表示具有不同目标模板的候选对象。为此,提出了一种新的基于跟踪器的加权稀疏表示(WSRT)。具体来说,为了表示候选对象,每个目标模板根据其与候选对象的相似度进行加权。相似度越大,目标模板被选择的概率越大。该跟踪器选择相似的目标模板来表示每个候选模板,并反映候选模板和目标模板之间的局部性结构。实验结果表明,该跟踪器具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual tracking via weighted sparse representation
Recently, sparse representation has been used in visual tracking, and related trackers have emerged. However, such sparse representation is not stable and has the potential to represent a candidate with dissimilar target templates. Therefore, a new tracker based weighted sparse representation (WSRT) is proposed. Specifically, to represent a candidate, each target template is weighted according to its similarity to the candidate. The bigger the similarity is, the bigger the probability of the target template to be chosen will be. The proposed tracker chooses the similar target templates to represent each candidate and reflects the locality structure between the candidate and target templates. Experimental results show that the proposed tracker has excellent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One methodology for spam review detection based on review coherence metrics Visual tracking via weighted sparse representation A condition monitoring algorithm based on image geometric analysis for substation switch A rank sequence method for detecting black hole attack in ad hoc network Distributed CoMP transmission for cell range expansion with almost blank subframe in downlink heterogeneous networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1