{"title":"毛细管灌溉系统决策支持系统与模糊控制器","authors":"Mohammed Adamu , Abioye Mayowa , Isaac Jonah","doi":"10.47672/ajce.1422","DOIUrl":null,"url":null,"abstract":"Purpose: Different irrigation systems exist and they all possess various degrees of benefits in enhancing food sufficiency. In this study however, the enhancement of capillary irrigation system through an integrated fuzzy logic controller with Decision Support System (DSS) to ensure improvement in water saving for irrigation thereby improving crop yield towards food security was examined and achieved. \nMethodology: An integrated fuzzy logic controller with Decision Support System (DSS) for capillary irrigation system was adopted for the enhancement of water saving for irrigation. By using this method, the challenges of irrigation management which is prevalent with capillary irrigation system is minimised using the fuzzy logic controller. An Internet of things (IoT) based weather station for computation of potential evapotranspiration (PET), for measuring rainfall and a VH400 moisture content sensor for monitoring the volumetric water content of soil, were some facilities used to control the water level depth (WLD) autonomously through a fuzzy controller simulated in MATLAB and implemented on Arduino Mega. \nFindings: The soil moisture content (SMC) depicts that fuzzy controlled water level depth (WLD) is able to compensate reduction of water in crop medium that took place due to plant water uptake which changes daily. The result proves that dynamics of water supply depth has substantial effects on the water absorption flow rate, wetting pattern, soil water content and cumulative infiltration which are proportional to the water supply depth decrement. \nUnique Contribution to Practice: An integrated fuzzy logic controller with Decision Support System (DSS) is a new technique proposed for managing capillary irrigation system as it offers enhanced water saving capacity (irrigation volume) based on crop demand.","PeriodicalId":148892,"journal":{"name":"American Journal of Computing and Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision Support System and Fuzzy Logic Controller for Capillary Irrigation System\",\"authors\":\"Mohammed Adamu , Abioye Mayowa , Isaac Jonah\",\"doi\":\"10.47672/ajce.1422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Different irrigation systems exist and they all possess various degrees of benefits in enhancing food sufficiency. In this study however, the enhancement of capillary irrigation system through an integrated fuzzy logic controller with Decision Support System (DSS) to ensure improvement in water saving for irrigation thereby improving crop yield towards food security was examined and achieved. \\nMethodology: An integrated fuzzy logic controller with Decision Support System (DSS) for capillary irrigation system was adopted for the enhancement of water saving for irrigation. By using this method, the challenges of irrigation management which is prevalent with capillary irrigation system is minimised using the fuzzy logic controller. An Internet of things (IoT) based weather station for computation of potential evapotranspiration (PET), for measuring rainfall and a VH400 moisture content sensor for monitoring the volumetric water content of soil, were some facilities used to control the water level depth (WLD) autonomously through a fuzzy controller simulated in MATLAB and implemented on Arduino Mega. \\nFindings: The soil moisture content (SMC) depicts that fuzzy controlled water level depth (WLD) is able to compensate reduction of water in crop medium that took place due to plant water uptake which changes daily. The result proves that dynamics of water supply depth has substantial effects on the water absorption flow rate, wetting pattern, soil water content and cumulative infiltration which are proportional to the water supply depth decrement. \\nUnique Contribution to Practice: An integrated fuzzy logic controller with Decision Support System (DSS) is a new technique proposed for managing capillary irrigation system as it offers enhanced water saving capacity (irrigation volume) based on crop demand.\",\"PeriodicalId\":148892,\"journal\":{\"name\":\"American Journal of Computing and Engineering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47672/ajce.1422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47672/ajce.1422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decision Support System and Fuzzy Logic Controller for Capillary Irrigation System
Purpose: Different irrigation systems exist and they all possess various degrees of benefits in enhancing food sufficiency. In this study however, the enhancement of capillary irrigation system through an integrated fuzzy logic controller with Decision Support System (DSS) to ensure improvement in water saving for irrigation thereby improving crop yield towards food security was examined and achieved.
Methodology: An integrated fuzzy logic controller with Decision Support System (DSS) for capillary irrigation system was adopted for the enhancement of water saving for irrigation. By using this method, the challenges of irrigation management which is prevalent with capillary irrigation system is minimised using the fuzzy logic controller. An Internet of things (IoT) based weather station for computation of potential evapotranspiration (PET), for measuring rainfall and a VH400 moisture content sensor for monitoring the volumetric water content of soil, were some facilities used to control the water level depth (WLD) autonomously through a fuzzy controller simulated in MATLAB and implemented on Arduino Mega.
Findings: The soil moisture content (SMC) depicts that fuzzy controlled water level depth (WLD) is able to compensate reduction of water in crop medium that took place due to plant water uptake which changes daily. The result proves that dynamics of water supply depth has substantial effects on the water absorption flow rate, wetting pattern, soil water content and cumulative infiltration which are proportional to the water supply depth decrement.
Unique Contribution to Practice: An integrated fuzzy logic controller with Decision Support System (DSS) is a new technique proposed for managing capillary irrigation system as it offers enhanced water saving capacity (irrigation volume) based on crop demand.