基于lda的酒店评论情感可视化研究

Yu-Sheng Chen, Lieu-Hen Chen, Y. Takama
{"title":"基于lda的酒店评论情感可视化研究","authors":"Yu-Sheng Chen, Lieu-Hen Chen, Y. Takama","doi":"10.1109/ICDMW.2015.72","DOIUrl":null,"url":null,"abstract":"With the growth of user generated contents (UGC), it is important to know consumers' opinions about features or deficiencies of products quickly. Such information is important not only for companies, but also for consumers. Keyword-based visualization and clustering are effective methods to observe summary of opinions. In order to decrease users' effort in examining vast amount of UGC, we proposed an interactive visualization system that presents sentiment words with aspects based on natural language processing and sentiment lexicon. This paper also proposes to apply latent Dirichlet allocation (LDA) to cluster reviews into several topics in order to improve understandability of visualization. This paper explains the developed system with case studies.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Proposal of LDA-Based Sentiment Visualization of Hotel Reviews\",\"authors\":\"Yu-Sheng Chen, Lieu-Hen Chen, Y. Takama\",\"doi\":\"10.1109/ICDMW.2015.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growth of user generated contents (UGC), it is important to know consumers' opinions about features or deficiencies of products quickly. Such information is important not only for companies, but also for consumers. Keyword-based visualization and clustering are effective methods to observe summary of opinions. In order to decrease users' effort in examining vast amount of UGC, we proposed an interactive visualization system that presents sentiment words with aspects based on natural language processing and sentiment lexicon. This paper also proposes to apply latent Dirichlet allocation (LDA) to cluster reviews into several topics in order to improve understandability of visualization. This paper explains the developed system with case studies.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

随着用户生成内容(UGC)的增长,快速了解消费者对产品功能或不足的看法变得非常重要。这些信息不仅对公司很重要,对消费者也很重要。基于关键词的可视化和聚类是观察意见总结的有效方法。为了减少用户检查大量UGC的工作量,我们提出了一种基于自然语言处理和情感词典的情感词分方面呈现的交互式可视化系统。为了提高可视化的可理解性,本文还提出应用潜在狄利克雷分配(latent Dirichlet allocation, LDA)将评论聚类到多个主题中。本文通过案例分析对开发的系统进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposal of LDA-Based Sentiment Visualization of Hotel Reviews
With the growth of user generated contents (UGC), it is important to know consumers' opinions about features or deficiencies of products quickly. Such information is important not only for companies, but also for consumers. Keyword-based visualization and clustering are effective methods to observe summary of opinions. In order to decrease users' effort in examining vast amount of UGC, we proposed an interactive visualization system that presents sentiment words with aspects based on natural language processing and sentiment lexicon. This paper also proposes to apply latent Dirichlet allocation (LDA) to cluster reviews into several topics in order to improve understandability of visualization. This paper explains the developed system with case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1