基于压缩感知的Khatri-Rao子空间到达方向估计

Hirotaka Mukumoto, K. Hayashi, Megumi Kaneko
{"title":"基于压缩感知的Khatri-Rao子空间到达方向估计","authors":"Hirotaka Mukumoto, K. Hayashi, Megumi Kaneko","doi":"10.1109/APSIPA.2016.7820807","DOIUrl":null,"url":null,"abstract":"Direction-of-arrival (DOA) estimation via Khatri-Rao (KR) subspace with multiple signal classification (MUSIC) algorithm can cope with a higher number of incoming waves than that of sensors, while it requires the signals to be quasi-stationary and needs a larger number of “frames” than that of incoming waves. On the other hand, a hybrid approach of compressed sensing and MUSIC algorithm can estimate DOAs with snapshots less than the number of sources for noiseless observation, although the number of incoming waves must be less than that of sensors. Exploiting the fact that the frame in MUSIC via KR subspace corresponds to the snapshot in conventional MUSIC without observation noise, we propose a DOA estimation scheme using KR product array processing and compressed sensing, which can cope with a greater number of incoming waves than both that of sensors and that of frames. The validity of the proposed method is shown via numerical experiments.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direction-of-arrival estimation via Khatri-Rao subspace using compressed sensing\",\"authors\":\"Hirotaka Mukumoto, K. Hayashi, Megumi Kaneko\",\"doi\":\"10.1109/APSIPA.2016.7820807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direction-of-arrival (DOA) estimation via Khatri-Rao (KR) subspace with multiple signal classification (MUSIC) algorithm can cope with a higher number of incoming waves than that of sensors, while it requires the signals to be quasi-stationary and needs a larger number of “frames” than that of incoming waves. On the other hand, a hybrid approach of compressed sensing and MUSIC algorithm can estimate DOAs with snapshots less than the number of sources for noiseless observation, although the number of incoming waves must be less than that of sensors. Exploiting the fact that the frame in MUSIC via KR subspace corresponds to the snapshot in conventional MUSIC without observation noise, we propose a DOA estimation scheme using KR product array processing and compressed sensing, which can cope with a greater number of incoming waves than both that of sensors and that of frames. The validity of the proposed method is shown via numerical experiments.\",\"PeriodicalId\":409448,\"journal\":{\"name\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2016.7820807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于Khatri-Rao (KR)子空间的多信号分类(MUSIC)算法的到达方向(DOA)估计可以处理比传感器更多的传入波,但它要求信号是准平稳的,并且需要比传入波更多的“帧数”。另一方面,压缩感知和MUSIC算法的混合方法可以在快照少于无噪声观测源数量的情况下估计doa,尽管输入波的数量必须少于传感器的数量。利用KR子空间MUSIC中的帧与传统MUSIC中的无观测噪声的快照相对应的事实,提出了一种基于KR积阵列处理和压缩感知的DOA估计方案,该方案比传感器和帧都能处理更多的传入波。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direction-of-arrival estimation via Khatri-Rao subspace using compressed sensing
Direction-of-arrival (DOA) estimation via Khatri-Rao (KR) subspace with multiple signal classification (MUSIC) algorithm can cope with a higher number of incoming waves than that of sensors, while it requires the signals to be quasi-stationary and needs a larger number of “frames” than that of incoming waves. On the other hand, a hybrid approach of compressed sensing and MUSIC algorithm can estimate DOAs with snapshots less than the number of sources for noiseless observation, although the number of incoming waves must be less than that of sensors. Exploiting the fact that the frame in MUSIC via KR subspace corresponds to the snapshot in conventional MUSIC without observation noise, we propose a DOA estimation scheme using KR product array processing and compressed sensing, which can cope with a greater number of incoming waves than both that of sensors and that of frames. The validity of the proposed method is shown via numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilateral hemiface feature representation learning for pose robust facial expression recognition Voice-pathology analysis based on AR-HMM Locality sensitive discriminant analysis for speaker verification On the training of DNN-based average voice model for speech synthesis A study on target feature activation and normalization and their impacts on the performance of DNN based speech dereverberation systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1