为公开招标提供有效的课程建议

F. Durão, M. Caraciolo, Bruno J. M. Melo, S. Meira
{"title":"为公开招标提供有效的课程建议","authors":"F. Durão, M. Caraciolo, Bruno J. M. Melo, S. Meira","doi":"10.1504/IJKWI.2013.056374","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a recommendation model to assist users find relevant courses for public tenders. The recommendations are computed based on the user study activity at Atepassar.com, a web-based learning environment for public tender candidates. Unlike traditional academic-oriented recommender systems, our approach takes into account crucial information for public tender candidates such as salary offered by public tenders and location where the exams take place. Technically, our recommendations rely on content-based techniques and a location reasoning method in order to provide users with most feasible courses. Results from a real-world dataset indicate reasonable improvement in recommendation quality over compared baseline models - we observed about 11 precision improvement and 12.7% of recall gain over the best model compared - demonstrating the potential of our approach in recommending personalised courses.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards effective course-based recommendations for public tenders\",\"authors\":\"F. Durão, M. Caraciolo, Bruno J. M. Melo, S. Meira\",\"doi\":\"10.1504/IJKWI.2013.056374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a recommendation model to assist users find relevant courses for public tenders. The recommendations are computed based on the user study activity at Atepassar.com, a web-based learning environment for public tender candidates. Unlike traditional academic-oriented recommender systems, our approach takes into account crucial information for public tender candidates such as salary offered by public tenders and location where the exams take place. Technically, our recommendations rely on content-based techniques and a location reasoning method in order to provide users with most feasible courses. Results from a real-world dataset indicate reasonable improvement in recommendation quality over compared baseline models - we observed about 11 precision improvement and 12.7% of recall gain over the best model compared - demonstrating the potential of our approach in recommending personalised courses.\",\"PeriodicalId\":113936,\"journal\":{\"name\":\"Int. J. Knowl. Web Intell.\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Web Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKWI.2013.056374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2013.056374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个推荐模型,以帮助用户找到相关的公开招标课程。这些建议是根据Atepassar.com上的用户研究活动计算出来的,Atepassar.com是一个面向公开招标候选人的网络学习环境。与传统的以学术为导向的推荐系统不同,我们的方法考虑了公开招标候选人的关键信息,如公开招标提供的工资和考试地点。在技术上,我们的推荐依赖于基于内容的技术和位置推理方法,以便为用户提供最可行的课程。来自真实数据集的结果表明,与基线模型相比,推荐质量有了合理的提高——我们观察到,与所比较的最佳模型相比,推荐精度提高了11%,召回率提高了12.7%——这表明了我们的方法在推荐个性化课程方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards effective course-based recommendations for public tenders
In this paper, we propose a recommendation model to assist users find relevant courses for public tenders. The recommendations are computed based on the user study activity at Atepassar.com, a web-based learning environment for public tender candidates. Unlike traditional academic-oriented recommender systems, our approach takes into account crucial information for public tender candidates such as salary offered by public tenders and location where the exams take place. Technically, our recommendations rely on content-based techniques and a location reasoning method in order to provide users with most feasible courses. Results from a real-world dataset indicate reasonable improvement in recommendation quality over compared baseline models - we observed about 11 precision improvement and 12.7% of recall gain over the best model compared - demonstrating the potential of our approach in recommending personalised courses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSSA: a morpho-semantic knowledge extraction system for Arabic information retrieval Learning by redesigning programs: support system for understanding design policy in software design patterns Representations of psychological function based on ontology for collaborative design of peer support services for diabetic patients Learning how to learn with knowledge building process through experiences in new employee training: a case study on learner-mentor interaction model SKACICM a method for development of knowledge management and innovation system e-KnowSphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1