基于按键数据的LSTM预测模型的应用

O. Min, Zhang Wei, Zhou Nian, Xie Su
{"title":"基于按键数据的LSTM预测模型的应用","authors":"O. Min, Zhang Wei, Zhou Nian, Xie Su","doi":"10.1145/3446132.3446191","DOIUrl":null,"url":null,"abstract":"Based on the subject's keyboard typing time series dataset, an long short term (LSTM) network model was developed to predict the early-stage Parkinson's disease. The training and test results show that the area under ROC curve (AUC) is 0.82, accuracy rate (ACC) is 0.84, precision (PRE) is 0.85, recall rate (REC) is 0.98, and F1 score is 0.90. This indicates that the LSTM prediction model can botain high accuracy, precision and sensitivity results by automatically extracting keyboard typing time series characteristics of keyboard typing time series data.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of LSTM prediction model based on keystroke data\",\"authors\":\"O. Min, Zhang Wei, Zhou Nian, Xie Su\",\"doi\":\"10.1145/3446132.3446191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the subject's keyboard typing time series dataset, an long short term (LSTM) network model was developed to predict the early-stage Parkinson's disease. The training and test results show that the area under ROC curve (AUC) is 0.82, accuracy rate (ACC) is 0.84, precision (PRE) is 0.85, recall rate (REC) is 0.98, and F1 score is 0.90. This indicates that the LSTM prediction model can botain high accuracy, precision and sensitivity results by automatically extracting keyboard typing time series characteristics of keyboard typing time series data.\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于受试者的键盘输入时间序列数据集,建立了一个长期短期(LSTM)网络模型来预测早期帕金森病。训练和测试结果表明,该方法的ROC曲线下面积(AUC)为0.82,准确率(ACC)为0.84,准确率(PRE)为0.85,召回率(REC)为0.98,F1得分为0.90。这表明LSTM预测模型通过自动提取键盘输入时间序列数据的键盘输入时间序列特征,可以获得较高的准确度、精度和灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An application of LSTM prediction model based on keystroke data
Based on the subject's keyboard typing time series dataset, an long short term (LSTM) network model was developed to predict the early-stage Parkinson's disease. The training and test results show that the area under ROC curve (AUC) is 0.82, accuracy rate (ACC) is 0.84, precision (PRE) is 0.85, recall rate (REC) is 0.98, and F1 score is 0.90. This indicates that the LSTM prediction model can botain high accuracy, precision and sensitivity results by automatically extracting keyboard typing time series characteristics of keyboard typing time series data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lane Detection Combining Details and Integrity: an Advanced Method for Lane Detection The Cat's Eye Effect Target Recognition Method Based on deep convolutional neural network Leveraging Different Context for Response Generation through Topic-guided Multi-head Attention Siamese Multiplicative LSTM for Semantic Text Similarity Multi-constrained Vehicle Routing Problem Solution based on Adaptive Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1