基于线性脉冲变压器的脉冲发生器破岩效率研究

D. Molchanov, I. Lavrinovich
{"title":"基于线性脉冲变压器的脉冲发生器破岩效率研究","authors":"D. Molchanov, I. Lavrinovich","doi":"10.1109/PPPS34859.2019.9009799","DOIUrl":null,"url":null,"abstract":"The efficiency of electropulse drilling is recognized by many researchers worldwide. For electropulse drilling of shallow wells (tens of meters) with a high-voltage generator on the near-well surface, the specific energy consumption is much lower than that for conventional rotary drilling. For efficient electropulse drilling of deep wells (hundred meters to several kilometers), a compact downhole generator is needed, and this type of high-voltage generators can be built, in our opinion, around a line pulse transformer (LPT). The paper presents the results of laboratory tests of an LPT-based system for drilling presoaked rock samples similar in physical characteristics to rocks occurring at great depths. The results demonstrate that compared to systems based on a Marx generator, the LPT system is no less efficient while its overall dimensions, weight, and design simplicity are matchless. Recommendations are also given on how to increase the drilling efficiency of the LPT system by optimizing its parameters.","PeriodicalId":103240,"journal":{"name":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficiency of Rock Destruction by a Pulse Generator Based on a Linear Pulse Transformer\",\"authors\":\"D. Molchanov, I. Lavrinovich\",\"doi\":\"10.1109/PPPS34859.2019.9009799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of electropulse drilling is recognized by many researchers worldwide. For electropulse drilling of shallow wells (tens of meters) with a high-voltage generator on the near-well surface, the specific energy consumption is much lower than that for conventional rotary drilling. For efficient electropulse drilling of deep wells (hundred meters to several kilometers), a compact downhole generator is needed, and this type of high-voltage generators can be built, in our opinion, around a line pulse transformer (LPT). The paper presents the results of laboratory tests of an LPT-based system for drilling presoaked rock samples similar in physical characteristics to rocks occurring at great depths. The results demonstrate that compared to systems based on a Marx generator, the LPT system is no less efficient while its overall dimensions, weight, and design simplicity are matchless. Recommendations are also given on how to increase the drilling efficiency of the LPT system by optimizing its parameters.\",\"PeriodicalId\":103240,\"journal\":{\"name\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPPS34859.2019.9009799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS34859.2019.9009799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电脉冲钻井的效率得到了世界上许多研究人员的认可。近井面高压发生器电脉冲钻浅井(几十米),比能耗远低于常规旋转钻井。为了在深井(几百米到几公里)进行高效的电脉冲钻井,需要一种紧凑型的井下发电机,我们认为,这种高压发电机可以建在线路脉冲变压器(LPT)周围。本文介绍了一种基于lpt的系统的实验室测试结果,该系统用于钻探物理特征与深埋岩石相似的预浸岩石样品。结果表明,与基于Marx生成器的系统相比,LPT系统的效率并不低,而其整体尺寸、重量和设计简单性是无与伦比的。对如何通过优化LPT系统的参数来提高其钻井效率提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficiency of Rock Destruction by a Pulse Generator Based on a Linear Pulse Transformer
The efficiency of electropulse drilling is recognized by many researchers worldwide. For electropulse drilling of shallow wells (tens of meters) with a high-voltage generator on the near-well surface, the specific energy consumption is much lower than that for conventional rotary drilling. For efficient electropulse drilling of deep wells (hundred meters to several kilometers), a compact downhole generator is needed, and this type of high-voltage generators can be built, in our opinion, around a line pulse transformer (LPT). The paper presents the results of laboratory tests of an LPT-based system for drilling presoaked rock samples similar in physical characteristics to rocks occurring at great depths. The results demonstrate that compared to systems based on a Marx generator, the LPT system is no less efficient while its overall dimensions, weight, and design simplicity are matchless. Recommendations are also given on how to increase the drilling efficiency of the LPT system by optimizing its parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impedance Characteristics of Metal Oxide Varistor under Different Pulses Plasma Simulation and Modeling of Pseudospark Discharge for High Density and Energetic Electron Beam Generation A Comprehensive Design Procedure for High Voltage Pulse Power Transformers Concept Designs of a Compact LTD Generator with a Pulse Rise Time of 100 ns Cinco: A Compact High-Current Driver for High-Energy-Density Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1