{"title":"使用基于词汇表的开发人员专业知识模型分配bug报告","authors":"Do Matter, Adrian Kuhn, Oscar Nierstrasz","doi":"10.1109/MSR.2009.5069491","DOIUrl":null,"url":null,"abstract":"For popular software systems, the number of daily submitted bug reports is high. Triaging these incoming reports is a time consuming task. Part of the bug triage is the assignment of a report to a developer with the appropriate expertise. In this paper, we present an approach to automatically suggest developers who have the appropriate expertise for handling a bug report. We model developer expertise using the vocabulary found in their source code contributions and compare this vocabulary to the vocabulary of bug reports. We evaluate our approach by comparing the suggested experts to the persons who eventually worked on the bug. Using eight years of Eclipse development as a case study, we achieve 33.6% top-1 precision and 71.0% top-10 recall.","PeriodicalId":413721,"journal":{"name":"2009 6th IEEE International Working Conference on Mining Software Repositories","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"229","resultStr":"{\"title\":\"Assigning bug reports using a vocabulary-based expertise model of developers\",\"authors\":\"Do Matter, Adrian Kuhn, Oscar Nierstrasz\",\"doi\":\"10.1109/MSR.2009.5069491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For popular software systems, the number of daily submitted bug reports is high. Triaging these incoming reports is a time consuming task. Part of the bug triage is the assignment of a report to a developer with the appropriate expertise. In this paper, we present an approach to automatically suggest developers who have the appropriate expertise for handling a bug report. We model developer expertise using the vocabulary found in their source code contributions and compare this vocabulary to the vocabulary of bug reports. We evaluate our approach by comparing the suggested experts to the persons who eventually worked on the bug. Using eight years of Eclipse development as a case study, we achieve 33.6% top-1 precision and 71.0% top-10 recall.\",\"PeriodicalId\":413721,\"journal\":{\"name\":\"2009 6th IEEE International Working Conference on Mining Software Repositories\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"229\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 6th IEEE International Working Conference on Mining Software Repositories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2009.5069491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 6th IEEE International Working Conference on Mining Software Repositories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2009.5069491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assigning bug reports using a vocabulary-based expertise model of developers
For popular software systems, the number of daily submitted bug reports is high. Triaging these incoming reports is a time consuming task. Part of the bug triage is the assignment of a report to a developer with the appropriate expertise. In this paper, we present an approach to automatically suggest developers who have the appropriate expertise for handling a bug report. We model developer expertise using the vocabulary found in their source code contributions and compare this vocabulary to the vocabulary of bug reports. We evaluate our approach by comparing the suggested experts to the persons who eventually worked on the bug. Using eight years of Eclipse development as a case study, we achieve 33.6% top-1 precision and 71.0% top-10 recall.