基因表达数据分析的增量学习和递减表征

M. Guarracino, Salvatore Cuciniello, Davide Feminiano
{"title":"基因表达数据分析的增量学习和递减表征","authors":"M. Guarracino, Salvatore Cuciniello, Davide Feminiano","doi":"10.1109/CBMS.2008.63","DOIUrl":null,"url":null,"abstract":"In this study, we present incremental learning and decremented characterization of regularized generalized eigenvalue classification (ILDC-ReGEC), a novel algorithm to train a generalized eigenvalue classifier with a substantially smaller subset of points and features of the original data. The proposed method provides a constructive way to understand the influence of new training data on an existing classification model and the grouping of features that determine the class of samples. The proposed algorithm is compared with other well known solutions. Experimental results are conducted on publicly available datasets and standard parameters are used for evaluation.","PeriodicalId":377855,"journal":{"name":"2008 21st IEEE International Symposium on Computer-Based Medical Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Incremental Learning and Decremented Characterization of Gene Expression Data Analysis\",\"authors\":\"M. Guarracino, Salvatore Cuciniello, Davide Feminiano\",\"doi\":\"10.1109/CBMS.2008.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present incremental learning and decremented characterization of regularized generalized eigenvalue classification (ILDC-ReGEC), a novel algorithm to train a generalized eigenvalue classifier with a substantially smaller subset of points and features of the original data. The proposed method provides a constructive way to understand the influence of new training data on an existing classification model and the grouping of features that determine the class of samples. The proposed algorithm is compared with other well known solutions. Experimental results are conducted on publicly available datasets and standard parameters are used for evaluation.\",\"PeriodicalId\":377855,\"journal\":{\"name\":\"2008 21st IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 21st IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2008.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 21st IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2008.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们提出了正则化广义特征值分类(ILDC-ReGEC)的增量学习和递减表征,这是一种新的算法,可以用原始数据的更小的点和特征子集来训练广义特征值分类器。所提出的方法提供了一种建设性的方式来理解新的训练数据对现有分类模型的影响,以及确定样本类别的特征分组。并将该算法与其他已知解进行了比较。实验结果在公开可用的数据集上进行,并使用标准参数进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incremental Learning and Decremented Characterization of Gene Expression Data Analysis
In this study, we present incremental learning and decremented characterization of regularized generalized eigenvalue classification (ILDC-ReGEC), a novel algorithm to train a generalized eigenvalue classifier with a substantially smaller subset of points and features of the original data. The proposed method provides a constructive way to understand the influence of new training data on an existing classification model and the grouping of features that determine the class of samples. The proposed algorithm is compared with other well known solutions. Experimental results are conducted on publicly available datasets and standard parameters are used for evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decision Support for Alzheimer's Patients in Smart Homes A Telemedicine Network Using Secure Techniques and Intelligent User Access Control MapFace - An Editor for MetaMap Transfer (MMTx) Asynchronous Data Replication: A National Integration Strategy for Databases on Telemedicine Network Sentiment in Science - A Case Study of CBMS Contributions in Years 2003 to 2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1