对输出编码集合进行树修剪

T. Windeatt, G. Ardeshir
{"title":"对输出编码集合进行树修剪","authors":"T. Windeatt, G. Ardeshir","doi":"10.1109/ICPR.2002.1048245","DOIUrl":null,"url":null,"abstract":"Output coding is a method of converting a multiclass problem into several binary subproblems and gives an ensemble of binary classifiers. Like other ensemble methods, its performance depends on the accuracy and diversity of base classifiers. If a decision tree is chosen as base classifier the issue of tree pruning needs to be addressed. In this paper we investigate the effect of six methods of pruning on ensembles of trees generated by error-correcting output code (ECOC). Our results show that error-based pruning outperforms on most datasets but it is better not to prune than to select a single pruning strategy for all datasets.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tree pruning for output coded ensembles\",\"authors\":\"T. Windeatt, G. Ardeshir\",\"doi\":\"10.1109/ICPR.2002.1048245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Output coding is a method of converting a multiclass problem into several binary subproblems and gives an ensemble of binary classifiers. Like other ensemble methods, its performance depends on the accuracy and diversity of base classifiers. If a decision tree is chosen as base classifier the issue of tree pruning needs to be addressed. In this paper we investigate the effect of six methods of pruning on ensembles of trees generated by error-correcting output code (ECOC). Our results show that error-based pruning outperforms on most datasets but it is better not to prune than to select a single pruning strategy for all datasets.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

输出编码是一种将多类问题转化为若干二值子问题的方法,它给出了一组二值分类器。与其他集成方法一样,其性能取决于基分类器的准确性和多样性。如果选择决策树作为基分类器,则需要解决树修剪问题。本文研究了六种剪枝方法对纠错输出码(ECOC)生成的树集的影响。我们的结果表明,基于错误的剪枝在大多数数据集上都表现得更好,但最好不要剪枝,而不是为所有数据集选择单一的剪枝策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree pruning for output coded ensembles
Output coding is a method of converting a multiclass problem into several binary subproblems and gives an ensemble of binary classifiers. Like other ensemble methods, its performance depends on the accuracy and diversity of base classifiers. If a decision tree is chosen as base classifier the issue of tree pruning needs to be addressed. In this paper we investigate the effect of six methods of pruning on ensembles of trees generated by error-correcting output code (ECOC). Our results show that error-based pruning outperforms on most datasets but it is better not to prune than to select a single pruning strategy for all datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1