{"title":"机器学习中的组合算法","authors":"Peter Shaw","doi":"10.1109/AI4I.2018.8665720","DOIUrl":null,"url":null,"abstract":"Although quite old, the classic data clustering problem strives to segment the data into homogeneous groupings where homogeneity is measured by, for example, Gini Index. Classical techniques strive to group the data, by what one would argue as “smart” trial-and-error procedure. I will show how data could be clustered using entirely combinatorial techniques where Gini Index or Mean Squared Error receive no mention whatsoever. The Cluster-Editing algorithm aka “Edit-Distance” shows a great promise to help solve those intractable high-dimensional problems because it's totally indifferent to the dimensionality of the data.","PeriodicalId":133657,"journal":{"name":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial Algorithms in Machine Learning\",\"authors\":\"Peter Shaw\",\"doi\":\"10.1109/AI4I.2018.8665720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although quite old, the classic data clustering problem strives to segment the data into homogeneous groupings where homogeneity is measured by, for example, Gini Index. Classical techniques strive to group the data, by what one would argue as “smart” trial-and-error procedure. I will show how data could be clustered using entirely combinatorial techniques where Gini Index or Mean Squared Error receive no mention whatsoever. The Cluster-Editing algorithm aka “Edit-Distance” shows a great promise to help solve those intractable high-dimensional problems because it's totally indifferent to the dimensionality of the data.\",\"PeriodicalId\":133657,\"journal\":{\"name\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I.2018.8665720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I.2018.8665720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然相当古老,但经典的数据聚类问题努力将数据划分为同质组,其中同质性通过例如基尼指数来衡量。传统的技术通过所谓的“聪明的”试错过程,努力将数据分组。我将展示如何使用完全组合的技术对数据进行聚类,其中基尼指数或均方误差不被提及。聚类编辑算法又名“编辑距离”,它在帮助解决那些棘手的高维问题上表现出了很大的希望,因为它对数据的维数完全无所谓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combinatorial Algorithms in Machine Learning
Although quite old, the classic data clustering problem strives to segment the data into homogeneous groupings where homogeneity is measured by, for example, Gini Index. Classical techniques strive to group the data, by what one would argue as “smart” trial-and-error procedure. I will show how data could be clustered using entirely combinatorial techniques where Gini Index or Mean Squared Error receive no mention whatsoever. The Cluster-Editing algorithm aka “Edit-Distance” shows a great promise to help solve those intractable high-dimensional problems because it's totally indifferent to the dimensionality of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assisting Seismic Image Interpretations with Hyperknowledge Applying Machine Learning to Service Assurance in Network Function Virtualization Environment Combinatorial Algorithms in Machine Learning AI Application to Data Analysis, Automatic File Processing Multi-Layer Nested Scatter Plot a Data Wrangling Method for Correlated Multi-Channel Time Series Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1