一个免费的哈萨克语语音数据库和语音识别基线

Ying Shi, Askar Hamdullah, Zhiyuan Tang, Dong Wang, T. Zheng
{"title":"一个免费的哈萨克语语音数据库和语音识别基线","authors":"Ying Shi, Askar Hamdullah, Zhiyuan Tang, Dong Wang, T. Zheng","doi":"10.1109/APSIPA.2017.8282133","DOIUrl":null,"url":null,"abstract":"Automatic speech recognition (ASR) has gained significant improvement for major languages such as English and Chinese, partly due to the emergence of deep neural networks (DNN) and large amount of training data. For minority languages, however, the progress is largely behind the main stream. A particularly obstacle is that there are almost no large-scale speech databases for minority languages, and the only few databases are held by some institutes as private properties, far from open and standard, and very few are free. Besides the speech database, phonetic and linguistic resources are also scarce, including phone set, lexicon, and language model. In this paper, we publish a speech database in Kazakh, a major minority language in the western China. Accompanying this database, a full set of phonetic and linguistic resources are also published, by which a full-fledged Kazakh ASR system can be constructed. We will describe the recipe for constructing a baseline system, and report our present results. The resources are free for research institutes and can be obtained by request. The publication is supported by the M2ASR project supported by NSFC, which aims to build multilingual ASR systems for minority languages in China.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A free Kazakh speech database and a speech recognition baseline\",\"authors\":\"Ying Shi, Askar Hamdullah, Zhiyuan Tang, Dong Wang, T. Zheng\",\"doi\":\"10.1109/APSIPA.2017.8282133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic speech recognition (ASR) has gained significant improvement for major languages such as English and Chinese, partly due to the emergence of deep neural networks (DNN) and large amount of training data. For minority languages, however, the progress is largely behind the main stream. A particularly obstacle is that there are almost no large-scale speech databases for minority languages, and the only few databases are held by some institutes as private properties, far from open and standard, and very few are free. Besides the speech database, phonetic and linguistic resources are also scarce, including phone set, lexicon, and language model. In this paper, we publish a speech database in Kazakh, a major minority language in the western China. Accompanying this database, a full set of phonetic and linguistic resources are also published, by which a full-fledged Kazakh ASR system can be constructed. We will describe the recipe for constructing a baseline system, and report our present results. The resources are free for research institutes and can be obtained by request. The publication is supported by the M2ASR project supported by NSFC, which aims to build multilingual ASR systems for minority languages in China.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动语音识别(ASR)在英语和汉语等主要语言上取得了显著的进步,部分原因是深度神经网络(DNN)和大量训练数据的出现。然而,对于少数民族语言来说,进步在很大程度上落后于主流语言。一个特别的障碍是,目前几乎没有大规模的少数民族语言语音数据库,仅有的几个数据库被一些机构作为私有财产持有,远非开放和标准,而且很少是免费的。除了语音数据库,语音和语言资源也很匮乏,包括电话机、词汇和语言模型。在本文中,我们发布了一个哈萨克语语音数据库,哈萨克语是中国西部主要的少数民族语言。与此数据库配套的还有一整套的语音和语言资源,通过这些资源可以构建一个完整的哈萨克语ASR系统。我们将描述构建基线系统的方法,并报告我们目前的结果。这些资源对研究机构是免费的,可以根据要求获得。本论文受国家自然科学基金M2ASR项目资助,该项目旨在构建中国少数民族语言的多语种ASR系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A free Kazakh speech database and a speech recognition baseline
Automatic speech recognition (ASR) has gained significant improvement for major languages such as English and Chinese, partly due to the emergence of deep neural networks (DNN) and large amount of training data. For minority languages, however, the progress is largely behind the main stream. A particularly obstacle is that there are almost no large-scale speech databases for minority languages, and the only few databases are held by some institutes as private properties, far from open and standard, and very few are free. Besides the speech database, phonetic and linguistic resources are also scarce, including phone set, lexicon, and language model. In this paper, we publish a speech database in Kazakh, a major minority language in the western China. Accompanying this database, a full set of phonetic and linguistic resources are also published, by which a full-fledged Kazakh ASR system can be constructed. We will describe the recipe for constructing a baseline system, and report our present results. The resources are free for research institutes and can be obtained by request. The publication is supported by the M2ASR project supported by NSFC, which aims to build multilingual ASR systems for minority languages in China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Locomotion control of a serpentine crawling robot inspired by central pattern generators On the construction of more human-like chatbots: Affect and emotion analysis of movie dialogue data Pose-invariant kinematic features for action recognition CNN-based bottleneck feature for noise robust query-by-example spoken term detection Robust template matching using scale-adaptive deep convolutional features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1