预测蛋白质结构中重要功能残基的粒子群方法的比较研究

H. Firpi, Eunseog Youn, S. Mooney
{"title":"预测蛋白质结构中重要功能残基的粒子群方法的比较研究","authors":"H. Firpi, Eunseog Youn, S. Mooney","doi":"10.1109/WAINA.2008.298","DOIUrl":null,"url":null,"abstract":"Prediction of functionally important amino acids in protein structures is challenging problem in the area of protein function prediction. In the quest of looking for better machine learning approaches to address this problem, we have compared a support vector machine and a neural network trained with a particle swarm algorithm (PSO) to nonlinearly combine a subset of features selected from a set of 314 features describing catalytic residues in protein structures. We compare this approach against three other approaches. Results show trade-offs for two of the approaches on the precision-recall curves. While no approach surpassed the performance of the linear kernel support vector machine (SVM) classifier, the performance of the PSO was comparable to that of a feature selected SVM.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Study of Particle Swarm Approaches for the Prediction of Functionally Important Residues in Protein Structures\",\"authors\":\"H. Firpi, Eunseog Youn, S. Mooney\",\"doi\":\"10.1109/WAINA.2008.298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of functionally important amino acids in protein structures is challenging problem in the area of protein function prediction. In the quest of looking for better machine learning approaches to address this problem, we have compared a support vector machine and a neural network trained with a particle swarm algorithm (PSO) to nonlinearly combine a subset of features selected from a set of 314 features describing catalytic residues in protein structures. We compare this approach against three other approaches. Results show trade-offs for two of the approaches on the precision-recall curves. While no approach surpassed the performance of the linear kernel support vector machine (SVM) classifier, the performance of the PSO was comparable to that of a feature selected SVM.\",\"PeriodicalId\":170418,\"journal\":{\"name\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2008.298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

蛋白质结构中重要功能氨基酸的预测是蛋白质功能预测领域中具有挑战性的问题。为了寻找更好的机器学习方法来解决这个问题,我们比较了支持向量机和用粒子群算法(PSO)训练的神经网络,以非线性组合从描述蛋白质结构中催化残基的314个特征中选择的特征子集。我们将这种方法与其他三种方法进行比较。结果显示了两种方法在精确召回曲线上的权衡。虽然没有任何方法可以超越线性核支持向量机(SVM)分类器的性能,但PSO的性能与特征选择支持向量机的性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of Particle Swarm Approaches for the Prediction of Functionally Important Residues in Protein Structures
Prediction of functionally important amino acids in protein structures is challenging problem in the area of protein function prediction. In the quest of looking for better machine learning approaches to address this problem, we have compared a support vector machine and a neural network trained with a particle swarm algorithm (PSO) to nonlinearly combine a subset of features selected from a set of 314 features describing catalytic residues in protein structures. We compare this approach against three other approaches. Results show trade-offs for two of the approaches on the precision-recall curves. While no approach surpassed the performance of the linear kernel support vector machine (SVM) classifier, the performance of the PSO was comparable to that of a feature selected SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Metadata Generation and its Application to Biological Association Extraction Towards a Usenet-Like Discussion System for Users of Disconnected MANETs A New Centroid-Based Classifier for Text Categorization Explaining Answers from Agent Communication of Semantic Web Information Parallel Computing of CG Using an Open Source Windows Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1