线性模型参数估计的鲁棒技术

Neel Pandey
{"title":"线性模型参数估计的鲁棒技术","authors":"Neel Pandey","doi":"10.2139/ssrn.3694906","DOIUrl":null,"url":null,"abstract":"Standard regression technique uses Ordinary Least Square estimator (OLS) for model fitting. In the presence of outliers OLS fits the model vary sharply with respect to actual regression curve. For model fitting, this paper applies robust estimation approach as a substitute for OLS. This approach reduces the ill effect of outliers and learns the representation of data. Various robust regression techniques, namely, L estimators, M estimators, S estimator and MM estimator have been used which works on the principle of order statistics and weighting techniques to reduce the weight of distant observations. These estimators are applied on four data set out of which 3 are taken from UCI repository and one is taken from NASA Surface meteorology and Solar energy. When comparing the methods on the basis of bias and variance parameters MM estimator performs well in majority of the data set while in some cases M estimator also exhibited promising results.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Techniques to Estimate Parameters of Linear Models\",\"authors\":\"Neel Pandey\",\"doi\":\"10.2139/ssrn.3694906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard regression technique uses Ordinary Least Square estimator (OLS) for model fitting. In the presence of outliers OLS fits the model vary sharply with respect to actual regression curve. For model fitting, this paper applies robust estimation approach as a substitute for OLS. This approach reduces the ill effect of outliers and learns the representation of data. Various robust regression techniques, namely, L estimators, M estimators, S estimator and MM estimator have been used which works on the principle of order statistics and weighting techniques to reduce the weight of distant observations. These estimators are applied on four data set out of which 3 are taken from UCI repository and one is taken from NASA Surface meteorology and Solar energy. When comparing the methods on the basis of bias and variance parameters MM estimator performs well in majority of the data set while in some cases M estimator also exhibited promising results.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3694906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3694906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标准回归技术使用普通最小二乘估计(OLS)进行模型拟合。在存在异常值的情况下,OLS拟合模型相对于实际回归曲线变化很大。对于模型拟合,本文采用鲁棒估计方法代替OLS。这种方法减少了异常值的不良影响,并学习了数据的表示。各种鲁棒回归技术,即L估计器、M估计器、S估计器和MM估计器已经被使用,它们的工作原理是有序统计量和加权技术,以减少远程观测值的权重。这些估计值应用于四个数据集,其中三个数据集来自UCI存储库,一个数据集来自NASA地面气象和太阳能。当比较基于偏差和方差参数的方法时,MM估计器在大多数数据集中表现良好,而在某些情况下M估计器也显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Techniques to Estimate Parameters of Linear Models
Standard regression technique uses Ordinary Least Square estimator (OLS) for model fitting. In the presence of outliers OLS fits the model vary sharply with respect to actual regression curve. For model fitting, this paper applies robust estimation approach as a substitute for OLS. This approach reduces the ill effect of outliers and learns the representation of data. Various robust regression techniques, namely, L estimators, M estimators, S estimator and MM estimator have been used which works on the principle of order statistics and weighting techniques to reduce the weight of distant observations. These estimators are applied on four data set out of which 3 are taken from UCI repository and one is taken from NASA Surface meteorology and Solar energy. When comparing the methods on the basis of bias and variance parameters MM estimator performs well in majority of the data set while in some cases M estimator also exhibited promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assortment Optimization and Pricing Under the Threshold-Based Choice Models Robust Techniques to Estimate Parameters of Linear Models Identification of Random Coefficient Latent Utility Models An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models Equivalent Choice Functions and Stable Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1