用于处理大型多维数据集的可扩展数据结构

K. Hasan, K. Islam, Mojahidul Islam, T. Tsuji
{"title":"用于处理大型多维数据集的可扩展数据结构","authors":"K. Hasan, K. Islam, Mojahidul Islam, T. Tsuji","doi":"10.1109/ICCIT.2009.5407319","DOIUrl":null,"url":null,"abstract":"Multidimensional array is widely used in large number of scientific research and engineering applications for handling large multidimensional data. There exist many data structures to represent multidimensional data. But most of these data structures are static (such as traditional multidimensional array) and can not handle the dynamic extension or reduction of the array. The Traditional Multidimensional Array (TMA) is efficient in terms of accessing the elements of the array by random computing the addressing function but TMA is not extendible during run time. In this paper we propose a new scheme, Karnaugh Representation of Extendible Array (KEA), to represent the multidimensional data. The main idea of this scheme is to represent n dimensional array by a set of two dimensional extendible arrays. The scheme can be extended in any direction during run time. To evaluate our proposed scheme, we implement and compare with the existing systems for different operations with the Traditional Multidimensional Array (TMA), and Traditional Extendible Array (TEA). Our experimental result shows that the KEA scheme outperforms TMA and TEA.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An extendible data structure for handling large multidimensional data sets\",\"authors\":\"K. Hasan, K. Islam, Mojahidul Islam, T. Tsuji\",\"doi\":\"10.1109/ICCIT.2009.5407319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multidimensional array is widely used in large number of scientific research and engineering applications for handling large multidimensional data. There exist many data structures to represent multidimensional data. But most of these data structures are static (such as traditional multidimensional array) and can not handle the dynamic extension or reduction of the array. The Traditional Multidimensional Array (TMA) is efficient in terms of accessing the elements of the array by random computing the addressing function but TMA is not extendible during run time. In this paper we propose a new scheme, Karnaugh Representation of Extendible Array (KEA), to represent the multidimensional data. The main idea of this scheme is to represent n dimensional array by a set of two dimensional extendible arrays. The scheme can be extended in any direction during run time. To evaluate our proposed scheme, we implement and compare with the existing systems for different operations with the Traditional Multidimensional Array (TMA), and Traditional Extendible Array (TEA). Our experimental result shows that the KEA scheme outperforms TMA and TEA.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

多维阵列被广泛应用于大量的科学研究和工程应用中,用于处理大量的多维数据。存在许多表示多维数据的数据结构。但这些数据结构大多是静态的(如传统的多维数组),不能处理数组的动态扩展或缩减。传统的多维数组(TMA)通过随机计算寻址函数来访问数组元素是有效的,但TMA在运行时是不可扩展的。本文提出了一种新的多维数据表示方案——可扩展数组的卡诺表示(KEA)。该方案的主要思想是用一组二维可扩展数组来表示n维数组。该方案可以在运行时向任何方向扩展。为了评估我们的方案,我们实现了传统多维阵列(TMA)和传统可扩展阵列(TEA)的不同操作,并与现有系统进行了比较。实验结果表明,KEA方案优于TMA和TEA方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An extendible data structure for handling large multidimensional data sets
Multidimensional array is widely used in large number of scientific research and engineering applications for handling large multidimensional data. There exist many data structures to represent multidimensional data. But most of these data structures are static (such as traditional multidimensional array) and can not handle the dynamic extension or reduction of the array. The Traditional Multidimensional Array (TMA) is efficient in terms of accessing the elements of the array by random computing the addressing function but TMA is not extendible during run time. In this paper we propose a new scheme, Karnaugh Representation of Extendible Array (KEA), to represent the multidimensional data. The main idea of this scheme is to represent n dimensional array by a set of two dimensional extendible arrays. The scheme can be extended in any direction during run time. To evaluate our proposed scheme, we implement and compare with the existing systems for different operations with the Traditional Multidimensional Array (TMA), and Traditional Extendible Array (TEA). Our experimental result shows that the KEA scheme outperforms TMA and TEA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1