光电系统关键参数的推导

D. Cheu, T. Adams, S. Revankar
{"title":"光电系统关键参数的推导","authors":"D. Cheu, T. Adams, S. Revankar","doi":"10.1115/ICONE26-81109","DOIUrl":null,"url":null,"abstract":"Betavoltaic cells are nuclear batteries ideal for low-power applications for extended periods of time without maintenance or replacement. Betavoltaics function similarly to photovoltaic (solar) cells where instead of using sunlight, beta particles are used to generate electron-hole pairs within a semiconductor p-n junction to generate current. Even though there have been multiple demonstrations, betavoltaic performance has not been extensively studied. To accurately predict betavoltaic performance, which is important for a device in operation without maintenance for elongated periods, all parameters are required to predict potential fluctuations in cell performance, such as doping densities and resistances for semiconductor variation and absorption coefficients for beta-generated current. However, not all parameters are easily measured, especially when the p-n junction is constantly under irradiation and cannot be separated from the source. Critical parameters were characterized experimentally with the betavoltaic cell by performing capacitance-voltage to determine doping densities and performing current-voltage characterization tests to determine resistances on multiple NanoTritium™ cells, while absorption coefficients were determined from MCNP6 simulations. Experiments indicated that series resistance Rs was 1 × 106 Ω, while shunt resistance Rsh was 2 × 108 Ω from I-V characterization, while doping density ND was determined to be 1 × 1017 cm−3 from C-V characterization. Absorption coefficient α was found to vary with semiconductor material and incoming beta energy and used in conjunction with critical parameters from experimentation to accurately model betavoltaic cell performance similar to experimental results. Both implicit equations and explicit estimations were compared to model betavoltaic cell performance.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Derivation of Critical Parameters of Betavoltaics\",\"authors\":\"D. Cheu, T. Adams, S. Revankar\",\"doi\":\"10.1115/ICONE26-81109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Betavoltaic cells are nuclear batteries ideal for low-power applications for extended periods of time without maintenance or replacement. Betavoltaics function similarly to photovoltaic (solar) cells where instead of using sunlight, beta particles are used to generate electron-hole pairs within a semiconductor p-n junction to generate current. Even though there have been multiple demonstrations, betavoltaic performance has not been extensively studied. To accurately predict betavoltaic performance, which is important for a device in operation without maintenance for elongated periods, all parameters are required to predict potential fluctuations in cell performance, such as doping densities and resistances for semiconductor variation and absorption coefficients for beta-generated current. However, not all parameters are easily measured, especially when the p-n junction is constantly under irradiation and cannot be separated from the source. Critical parameters were characterized experimentally with the betavoltaic cell by performing capacitance-voltage to determine doping densities and performing current-voltage characterization tests to determine resistances on multiple NanoTritium™ cells, while absorption coefficients were determined from MCNP6 simulations. Experiments indicated that series resistance Rs was 1 × 106 Ω, while shunt resistance Rsh was 2 × 108 Ω from I-V characterization, while doping density ND was determined to be 1 × 1017 cm−3 from C-V characterization. Absorption coefficient α was found to vary with semiconductor material and incoming beta energy and used in conjunction with critical parameters from experimentation to accurately model betavoltaic cell performance similar to experimental results. Both implicit equations and explicit estimations were compared to model betavoltaic cell performance.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

倍他伏打电池是理想的核电池,适合低功耗应用,无需长时间维护或更换。贝塔光伏电池的功能类似于光伏(太阳能)电池,不是利用阳光,而是利用贝塔粒子在半导体p-n结内产生电子-空穴对来产生电流。尽管已经有多次演示,但倍他伏打性能尚未得到广泛研究。为了准确预测贝塔伏打性能,这对于长时间运行而无需维护的设备非常重要,需要所有参数来预测电池性能的潜在波动,例如掺杂密度和半导体变化的电阻以及贝塔产生电流的吸收系数。然而,并不是所有的参数都很容易测量,特别是当p-n结持续受到辐射并且不能与源分离时。通过电容-电压测试确定掺杂密度,通过电流-电压测试确定多个NanoTritium™电池上的电阻,并通过MCNP6模拟确定吸收系数,对betavolta电池的关键参数进行了实验表征。实验表明,串联电阻Rs为1 × 106 Ω,分流电阻Rsh为2 × 108 Ω, C-V表征确定掺杂密度ND为1 × 1017 cm−3。发现吸收系数α随半导体材料和入射能量的变化而变化,并将其与实验中的关键参数结合使用,以准确地模拟倍他伏打电池的性能,与实验结果相似。将隐式方程和显式估计与模型倍他伏打电池性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivation of Critical Parameters of Betavoltaics
Betavoltaic cells are nuclear batteries ideal for low-power applications for extended periods of time without maintenance or replacement. Betavoltaics function similarly to photovoltaic (solar) cells where instead of using sunlight, beta particles are used to generate electron-hole pairs within a semiconductor p-n junction to generate current. Even though there have been multiple demonstrations, betavoltaic performance has not been extensively studied. To accurately predict betavoltaic performance, which is important for a device in operation without maintenance for elongated periods, all parameters are required to predict potential fluctuations in cell performance, such as doping densities and resistances for semiconductor variation and absorption coefficients for beta-generated current. However, not all parameters are easily measured, especially when the p-n junction is constantly under irradiation and cannot be separated from the source. Critical parameters were characterized experimentally with the betavoltaic cell by performing capacitance-voltage to determine doping densities and performing current-voltage characterization tests to determine resistances on multiple NanoTritium™ cells, while absorption coefficients were determined from MCNP6 simulations. Experiments indicated that series resistance Rs was 1 × 106 Ω, while shunt resistance Rsh was 2 × 108 Ω from I-V characterization, while doping density ND was determined to be 1 × 1017 cm−3 from C-V characterization. Absorption coefficient α was found to vary with semiconductor material and incoming beta energy and used in conjunction with critical parameters from experimentation to accurately model betavoltaic cell performance similar to experimental results. Both implicit equations and explicit estimations were compared to model betavoltaic cell performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1