非负矩阵分解(NMF)初始化的最优方法

Hao Xie, Juan Qiu, Chuanlin Zhang
{"title":"非负矩阵分解(NMF)初始化的最优方法","authors":"Hao Xie, Juan Qiu, Chuanlin Zhang","doi":"10.12733/JICS20105569","DOIUrl":null,"url":null,"abstract":"An optimization method of the NMF algorithm initialization is proposed. This optimization method can be easily integrated with the existing initialization methods of NMF algorithm. The strategy is based on the geometric interpretation of NMF, in the convex hull, the intersection point between the connect of two points and the corresponding boundary of probability simplex, is used to update the initial basis vectors corresponding point in the matrix, so that the base vector matrix extended, and it can better contain the original matrix. Many numerical examples show that, compared with the original initialization, this method can obtain better results.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimal Method for the Initialization of Non-negative Matrix Factorization (NMF) ⋆\",\"authors\":\"Hao Xie, Juan Qiu, Chuanlin Zhang\",\"doi\":\"10.12733/JICS20105569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimization method of the NMF algorithm initialization is proposed. This optimization method can be easily integrated with the existing initialization methods of NMF algorithm. The strategy is based on the geometric interpretation of NMF, in the convex hull, the intersection point between the connect of two points and the corresponding boundary of probability simplex, is used to update the initial basis vectors corresponding point in the matrix, so that the base vector matrix extended, and it can better contain the original matrix. Many numerical examples show that, compared with the original initialization, this method can obtain better results.\",\"PeriodicalId\":213716,\"journal\":{\"name\":\"The Journal of Information and Computational Science\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Information and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12733/JICS20105569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种NMF算法初始化的优化方法。该优化方法可以方便地与现有的NMF算法初始化方法集成。该策略是基于NMF的几何解释,在凸包中,两点连接点之间的交点与概率单纯形的对应边界,用来更新矩阵中初始基向量对应点,使基向量矩阵得到扩展,并且它能更好地包含原始矩阵。许多数值算例表明,与原始初始化相比,该方法可以获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimal Method for the Initialization of Non-negative Matrix Factorization (NMF) ⋆
An optimization method of the NMF algorithm initialization is proposed. This optimization method can be easily integrated with the existing initialization methods of NMF algorithm. The strategy is based on the geometric interpretation of NMF, in the convex hull, the intersection point between the connect of two points and the corresponding boundary of probability simplex, is used to update the initial basis vectors corresponding point in the matrix, so that the base vector matrix extended, and it can better contain the original matrix. Many numerical examples show that, compared with the original initialization, this method can obtain better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrical gait based model for fall detection using thresholding Research of Spatial Data Query Optimization Methods Based on K-Nearest Neighbor Algorithm An Algebraic-trigonometric Blended Piecewise Curve Micro-expression Cognition and Emotion Modeling Based on Gross Reappraisal Strategy A Novel Cognitive Radio Decision Engine Based on Chaotic Quantum Bee Colony Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1