某些二重幂级数的Wiman型不等式

A. Kuryliak, L. O. Shapovalovska, O. Skaskiv
{"title":"某些二重幂级数的Wiman型不等式","authors":"A. Kuryliak, L. O. Shapovalovska, O. Skaskiv","doi":"10.31861/bmj2021.01.05","DOIUrl":null,"url":null,"abstract":"By $\\mathcal{A}^2$ denote the class of analytic functions of the formBy $\\mathcal{A}^2$ denote the class of analytic functions of the form$f(z)=\\sum_{n+m=0}^{+\\infty}a_{nm}z_1^nz_2^m,$with {the} domain of convergence $\\mathbb{T}=\\{z=(z_1,z_2)\\in\\mathbb C^2\\colon|z_1|<1,\\ |z_2|<+\\infty\\}=\\mathbb{D}\\times\\mathbb{C}$ and$\\frac{\\partial}{\\partial z_2}f(z_1,z_2)\\not\\equiv0$ in $\\mathbb{T}.$ In this paper we prove some analogue of Wiman's inequalityfor analytic functions $f\\in\\mathcal{A}^2$. Let a function $h\\colon \\mathbb R^2_+\\to \\mathbb R_+$ be such that$h$ is nondecreasing with respect to each variables and $h(r)\\geq 10$ for all $r\\in T:=(0,1)\\times (0,+\\infty)$and $\\iint_{\\Delta_\\varepsilon}\\frac{h(r)dr_1dr_2}{(1-r_1)r_2}=+\\infty$ for some $\\varepsilon\\in(0,1)$, where $\\Delta_{\\varepsilon}=\\{(t_1, t_2)\\in T\\colon t_1>\\varepsilon,\\ t_2> \\varepsilon\\}$.We say that $E\\subset T$ is a set of asymptotically  finite $h$-measure on\\ ${T}$if $\\nu_{h}(E){:=}\\iint\\limits_{E\\cap\\Delta_{\\varepsilon}}\\frac{h(r)dr_1dr_2}{(1-r_1)r_2}<+\\infty$ for some $\\varepsilon>0$. For $r=(r_1,r_2)\\in T$ and a function $f\\in\\mathcal{A}^2$ denote\\begin{gather*}M_f(r)=\\max \\{|f(z)|\\colon  |z_1|\\leq r_1,|z_2|\\leq r_2\\},\\\\mu_f(r)=\\max\\{|a_{nm}|r_1^{n} r_2^{m}\\colon(n,m)\\in{\\mathbb{Z}}_+^2\\}.\\end{gather*}We prove the following theorem:{\\sl Let $f\\in\\mathcal{A}^2$. For every $\\delta>0$ there exists a set $E=E(\\delta,f)$ of asymptotically  finite $h$-measure on\\ ${T}$ such that for all $r\\in (T\\cap\\Delta_{\\varepsilon})\\backslash E$ we have \\begin{equation*} M_f(r)\\leq\\frac{h^{3/2}(r)\\mu_f(r)}{(1-r_1)^{1+\\delta}}\\ln^{1+\\delta} \\Bigl(\\frac{h(r)\\mu_f(r)}{1-r_1}\\Bigl)\\cdot\\ln^{1/2+\\delta}\\frac{er_2}{\\varepsilon}. \\end{equation*}}","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":"31 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"WIMAN’S TYPE INEQUALITY FOR SOME DOUBLE POWER SERIES\",\"authors\":\"A. Kuryliak, L. O. Shapovalovska, O. Skaskiv\",\"doi\":\"10.31861/bmj2021.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By $\\\\mathcal{A}^2$ denote the class of analytic functions of the formBy $\\\\mathcal{A}^2$ denote the class of analytic functions of the form$f(z)=\\\\sum_{n+m=0}^{+\\\\infty}a_{nm}z_1^nz_2^m,$with {the} domain of convergence $\\\\mathbb{T}=\\\\{z=(z_1,z_2)\\\\in\\\\mathbb C^2\\\\colon|z_1|<1,\\\\ |z_2|<+\\\\infty\\\\}=\\\\mathbb{D}\\\\times\\\\mathbb{C}$ and$\\\\frac{\\\\partial}{\\\\partial z_2}f(z_1,z_2)\\\\not\\\\equiv0$ in $\\\\mathbb{T}.$ In this paper we prove some analogue of Wiman's inequalityfor analytic functions $f\\\\in\\\\mathcal{A}^2$. Let a function $h\\\\colon \\\\mathbb R^2_+\\\\to \\\\mathbb R_+$ be such that$h$ is nondecreasing with respect to each variables and $h(r)\\\\geq 10$ for all $r\\\\in T:=(0,1)\\\\times (0,+\\\\infty)$and $\\\\iint_{\\\\Delta_\\\\varepsilon}\\\\frac{h(r)dr_1dr_2}{(1-r_1)r_2}=+\\\\infty$ for some $\\\\varepsilon\\\\in(0,1)$, where $\\\\Delta_{\\\\varepsilon}=\\\\{(t_1, t_2)\\\\in T\\\\colon t_1>\\\\varepsilon,\\\\ t_2> \\\\varepsilon\\\\}$.We say that $E\\\\subset T$ is a set of asymptotically  finite $h$-measure on\\\\ ${T}$if $\\\\nu_{h}(E){:=}\\\\iint\\\\limits_{E\\\\cap\\\\Delta_{\\\\varepsilon}}\\\\frac{h(r)dr_1dr_2}{(1-r_1)r_2}<+\\\\infty$ for some $\\\\varepsilon>0$. For $r=(r_1,r_2)\\\\in T$ and a function $f\\\\in\\\\mathcal{A}^2$ denote\\\\begin{gather*}M_f(r)=\\\\max \\\\{|f(z)|\\\\colon  |z_1|\\\\leq r_1,|z_2|\\\\leq r_2\\\\},\\\\\\\\mu_f(r)=\\\\max\\\\{|a_{nm}|r_1^{n} r_2^{m}\\\\colon(n,m)\\\\in{\\\\mathbb{Z}}_+^2\\\\}.\\\\end{gather*}We prove the following theorem:{\\\\sl Let $f\\\\in\\\\mathcal{A}^2$. For every $\\\\delta>0$ there exists a set $E=E(\\\\delta,f)$ of asymptotically  finite $h$-measure on\\\\ ${T}$ such that for all $r\\\\in (T\\\\cap\\\\Delta_{\\\\varepsilon})\\\\backslash E$ we have \\\\begin{equation*} M_f(r)\\\\leq\\\\frac{h^{3/2}(r)\\\\mu_f(r)}{(1-r_1)^{1+\\\\delta}}\\\\ln^{1+\\\\delta} \\\\Bigl(\\\\frac{h(r)\\\\mu_f(r)}{1-r_1}\\\\Bigl)\\\\cdot\\\\ln^{1/2+\\\\delta}\\\\frac{er_2}{\\\\varepsilon}. \\\\end{equation*}}\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":\"31 17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2021.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

By $\mathcal{A}^2$ 表示形式为by的解析函数的类 $\mathcal{A}^2$ 表示如下形式的解析函数的类$f(z)=\sum_{n+m=0}^{+\infty}a_{nm}z_1^nz_2^m,$有 {the} 收敛域 $\mathbb{T}=\{z=(z_1,z_2)\in\mathbb C^2\colon|z_1|\varepsilon,\ t_2> \varepsilon\}$我们这么说 $E\subset T$ 一个集合是渐近有限的吗 $h$-测量 ${T}$如果 $\nu_{h}(E){:=}\iint\limits_{E\cap\Delta_{\varepsilon}}\frac{h(r)dr_1dr_2}{(1-r_1)r_2}0$. 因为 $r=(r_1,r_2)\in T$ 一个函数 $f\in\mathcal{A}^2$ 表示\begin{gather*}M_f(r)=\max \{|f(z)|\colon  |z_1|\leq r_1,|z_2|\leq r_2\},\\mu_f(r)=\max\{|a_{nm}|r_1^{n} r_2^{m}\colon(n,m)\in{\mathbb{Z}}_+^2\}.\end{gather*}我们证明了以下定理:{\sl 让 $f\in\mathcal{A}^2$. 对于每一个 $\delta>0$ 存在一个集合 $E=E(\delta,f)$ 渐近有限的 $h$-测量 ${T}$ 对于所有人来说 $r\in (T\cap\Delta_{\varepsilon})\backslash E$ 我们有 \begin{equation*} M_f(r)\leq\frac{h^{3/2}(r)\mu_f(r)}{(1-r_1)^{1+\delta}}\ln^{1+\delta} \Bigl(\frac{h(r)\mu_f(r)}{1-r_1}\Bigl)\cdot\ln^{1/2+\delta}\frac{er_2}{\varepsilon}. \end{equation*}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WIMAN’S TYPE INEQUALITY FOR SOME DOUBLE POWER SERIES
By $\mathcal{A}^2$ denote the class of analytic functions of the formBy $\mathcal{A}^2$ denote the class of analytic functions of the form$f(z)=\sum_{n+m=0}^{+\infty}a_{nm}z_1^nz_2^m,$with {the} domain of convergence $\mathbb{T}=\{z=(z_1,z_2)\in\mathbb C^2\colon|z_1|<1,\ |z_2|<+\infty\}=\mathbb{D}\times\mathbb{C}$ and$\frac{\partial}{\partial z_2}f(z_1,z_2)\not\equiv0$ in $\mathbb{T}.$ In this paper we prove some analogue of Wiman's inequalityfor analytic functions $f\in\mathcal{A}^2$. Let a function $h\colon \mathbb R^2_+\to \mathbb R_+$ be such that$h$ is nondecreasing with respect to each variables and $h(r)\geq 10$ for all $r\in T:=(0,1)\times (0,+\infty)$and $\iint_{\Delta_\varepsilon}\frac{h(r)dr_1dr_2}{(1-r_1)r_2}=+\infty$ for some $\varepsilon\in(0,1)$, where $\Delta_{\varepsilon}=\{(t_1, t_2)\in T\colon t_1>\varepsilon,\ t_2> \varepsilon\}$.We say that $E\subset T$ is a set of asymptotically  finite $h$-measure on\ ${T}$if $\nu_{h}(E){:=}\iint\limits_{E\cap\Delta_{\varepsilon}}\frac{h(r)dr_1dr_2}{(1-r_1)r_2}<+\infty$ for some $\varepsilon>0$. For $r=(r_1,r_2)\in T$ and a function $f\in\mathcal{A}^2$ denote\begin{gather*}M_f(r)=\max \{|f(z)|\colon  |z_1|\leq r_1,|z_2|\leq r_2\},\\mu_f(r)=\max\{|a_{nm}|r_1^{n} r_2^{m}\colon(n,m)\in{\mathbb{Z}}_+^2\}.\end{gather*}We prove the following theorem:{\sl Let $f\in\mathcal{A}^2$. For every $\delta>0$ there exists a set $E=E(\delta,f)$ of asymptotically  finite $h$-measure on\ ${T}$ such that for all $r\in (T\cap\Delta_{\varepsilon})\backslash E$ we have \begin{equation*} M_f(r)\leq\frac{h^{3/2}(r)\mu_f(r)}{(1-r_1)^{1+\delta}}\ln^{1+\delta} \Bigl(\frac{h(r)\mu_f(r)}{1-r_1}\Bigl)\cdot\ln^{1/2+\delta}\frac{er_2}{\varepsilon}. \end{equation*}}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INITIAL-BOUNDARY VALUE PROBLEM FOR HIGHER-ORDERS NONLINEAR PARABOLIC EQUATIONS WITH VARIABLE EXPONENTS OF THE NONLINEARITY IN UNBOUNDED DOMAINS WITHOUT CONDITIONS AT INFINITY UNIQUENESS THEOREMS FOR ALMOST PERIODIC OBJECTS SEMITOPOLOGICAL MODULES Differential equations for moments and the generating function of number of transformations for branching process with continuous time and migration WIMAN’S TYPE INEQUALITY FOR SOME DOUBLE POWER SERIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1