{"title":"使用非参数方法合成语音持续时间的基于中位数的生成","authors":"S. Ronanki, O. Watts, Simon King, G. Henter","doi":"10.1109/SLT.2016.7846337","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach to duration modelling for statistical parametric speech synthesis in which a recurrent statistical model is trained to output a phone transition probability at each timestep (acoustic frame). Unlike conventional approaches to duration modelling - which assume that duration distributions have a particular form (e.g., a Gaussian) and use the mean of that distribution for synthesis - our approach can in principle model any distribution supported on the non-negative integers. Generation from this model can be performed in many ways; here we consider output generation based on the median predicted duration. The median is more typical (more probable) than the conventional mean duration, is robust to training-data irregularities, and enables incremental generation. Furthermore, a frame-level approach to duration prediction is consistent with a longer-term goal of modelling durations and acoustic features together. Results indicate that the proposed method is competitive with baseline approaches in approximating the median duration of held-out natural speech.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Median-based generation of synthetic speech durations using a non-parametric approach\",\"authors\":\"S. Ronanki, O. Watts, Simon King, G. Henter\",\"doi\":\"10.1109/SLT.2016.7846337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach to duration modelling for statistical parametric speech synthesis in which a recurrent statistical model is trained to output a phone transition probability at each timestep (acoustic frame). Unlike conventional approaches to duration modelling - which assume that duration distributions have a particular form (e.g., a Gaussian) and use the mean of that distribution for synthesis - our approach can in principle model any distribution supported on the non-negative integers. Generation from this model can be performed in many ways; here we consider output generation based on the median predicted duration. The median is more typical (more probable) than the conventional mean duration, is robust to training-data irregularities, and enables incremental generation. Furthermore, a frame-level approach to duration prediction is consistent with a longer-term goal of modelling durations and acoustic features together. Results indicate that the proposed method is competitive with baseline approaches in approximating the median duration of held-out natural speech.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Median-based generation of synthetic speech durations using a non-parametric approach
This paper proposes a new approach to duration modelling for statistical parametric speech synthesis in which a recurrent statistical model is trained to output a phone transition probability at each timestep (acoustic frame). Unlike conventional approaches to duration modelling - which assume that duration distributions have a particular form (e.g., a Gaussian) and use the mean of that distribution for synthesis - our approach can in principle model any distribution supported on the non-negative integers. Generation from this model can be performed in many ways; here we consider output generation based on the median predicted duration. The median is more typical (more probable) than the conventional mean duration, is robust to training-data irregularities, and enables incremental generation. Furthermore, a frame-level approach to duration prediction is consistent with a longer-term goal of modelling durations and acoustic features together. Results indicate that the proposed method is competitive with baseline approaches in approximating the median duration of held-out natural speech.