基于张量投票的鲁棒彩色图像分割

R. Moreno, M. García, D. Puig
{"title":"基于张量投票的鲁棒彩色图像分割","authors":"R. Moreno, M. García, D. Puig","doi":"10.1109/ICPR.2010.823","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for robust color image segmentation based on tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. First, an adaptation of tensor voting to both image denoising and robust edge detection is applied. Second, pixels in the filtered image are classified into likely-homogeneous and likely-inhomogeneous by means of the edginess maps generated in the first step. Third, the likely-homosgeneous pixels are segmented through an efficient graph-based segmenter. Finally, a modified version of the same graph-based segmenter is applied to the likely-inhomogeneous pixels in order to obtain the final segmentation. Experiments show that the proposed algorithm has a better performance than the state-of-the-art.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust Color Image Segmentation through Tensor Voting\",\"authors\":\"R. Moreno, M. García, D. Puig\",\"doi\":\"10.1109/ICPR.2010.823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for robust color image segmentation based on tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. First, an adaptation of tensor voting to both image denoising and robust edge detection is applied. Second, pixels in the filtered image are classified into likely-homogeneous and likely-inhomogeneous by means of the edginess maps generated in the first step. Third, the likely-homosgeneous pixels are segmented through an efficient graph-based segmenter. Finally, a modified version of the same graph-based segmenter is applied to the likely-inhomogeneous pixels in order to obtain the final segmentation. Experiments show that the proposed algorithm has a better performance than the state-of-the-art.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于张量投票的鲁棒彩色图像分割新方法,该方法是一种鲁棒感知分组技术,用于从噪声数据中提取显著信息。首先,将张量投票应用于图像去噪和鲁棒边缘检测。其次,利用第一步生成的边缘图将滤波后图像中的像素划分为似均匀和似非均匀;第三,通过高效的基于图的分割器对可能同质的像素进行分割。最后,将相同的基于图的分割器的修改版本应用于可能不均匀的像素,以获得最终的分割。实验表明,该算法比现有算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Color Image Segmentation through Tensor Voting
This paper presents a new method for robust color image segmentation based on tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. First, an adaptation of tensor voting to both image denoising and robust edge detection is applied. Second, pixels in the filtered image are classified into likely-homogeneous and likely-inhomogeneous by means of the edginess maps generated in the first step. Third, the likely-homosgeneous pixels are segmented through an efficient graph-based segmenter. Finally, a modified version of the same graph-based segmenter is applied to the likely-inhomogeneous pixels in order to obtain the final segmentation. Experiments show that the proposed algorithm has a better performance than the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comprehensive Evaluation on Non-deterministic Motion Estimation Coarse Scale Feature Extraction Using the Spiral Architecture Structure Research the Performance of a Recursive Algorithm of the Local Discrete Wavelet Transform Underwater Mine Classification with Imperfect Labels Scribe Identification in Medieval English Manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1