基于黑鹳觅食过程的个体认知参数设置

Z. Cui
{"title":"基于黑鹳觅食过程的个体认知参数设置","authors":"Z. Cui","doi":"10.1109/HIS.2009.80","DOIUrl":null,"url":null,"abstract":"Cognitive learning factor is an important parameter in particle swarm optimization algorithm(PSO). Although many selection strategies have been proposed, there is still much work need to do. Inspired by the black stork foraging process, this paper designs a new cognitive selection strategy, in which the whole swarm is divided into adult and infant particle, and each kind particle has its special choice. Simulation results show this new strategy is superior to other two previous modifications.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Individual Cognitive Parameter Setting Based on Black Stork Foraging Process\",\"authors\":\"Z. Cui\",\"doi\":\"10.1109/HIS.2009.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive learning factor is an important parameter in particle swarm optimization algorithm(PSO). Although many selection strategies have been proposed, there is still much work need to do. Inspired by the black stork foraging process, this paper designs a new cognitive selection strategy, in which the whole swarm is divided into adult and infant particle, and each kind particle has its special choice. Simulation results show this new strategy is superior to other two previous modifications.\",\"PeriodicalId\":414085,\"journal\":{\"name\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2009.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

认知学习因子是粒子群优化算法中的一个重要参数。虽然已经提出了许多选择策略,但仍有许多工作需要做。受黑鹳觅食过程的启发,设计了一种新的认知选择策略,将整个群体分为成虫和幼虫,每一种幼虫都有其特殊的选择。仿真结果表明,该方法优于前两种改进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Individual Cognitive Parameter Setting Based on Black Stork Foraging Process
Cognitive learning factor is an important parameter in particle swarm optimization algorithm(PSO). Although many selection strategies have been proposed, there is still much work need to do. Inspired by the black stork foraging process, this paper designs a new cognitive selection strategy, in which the whole swarm is divided into adult and infant particle, and each kind particle has its special choice. Simulation results show this new strategy is superior to other two previous modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Intelligent Authorization Agent Model in Grid Backing up Truck Control Automatically Based on LOS Study on Generation Companies' Bidding Strategy Based on Hybrid Intelligent Method Sentence Features Fusion for Text Summarization Using Fuzzy Logic Available Bandwidth Estimation in IEEE 802.11 Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1