顾客满意度调查数据分析

Pete Rotella, S. Chulani
{"title":"顾客满意度调查数据分析","authors":"Pete Rotella, S. Chulani","doi":"10.1109/MSR.2012.6224304","DOIUrl":null,"url":null,"abstract":"Cisco Systems, Inc., conducts a customer satisfaction survey (CSAT) each year to gauge customer sentiment regarding Cisco products, technical support, partner- and Cisco-provided technical services, order fulfillment, and a number of other aspects of the companys business. The results of the analysis of this data are used for several purposes, including ascertaining the viability of new products, determining if customer support objectives are being met, setting engineering in-process and customer experience yearly metrics goals, and assessing, indirectly, the success of engineering initiatives. Analyzing this data, which includes 110,000 yearly sets of survey responses that address over 100 product and services categories, is in many respects complicated. For example, skip logic is an integral part of the survey mechanics, and forming aggregate views of customer sentiment is statistically challenging in this data environment. In this paper, we describe several of the various analysis approaches currently used, pointing out some situations where a high level of precision is not easily achieved, and some situations in which it is possible to easily end up with erroneous results. The analysis and statistical territory covered in this paper is in parts well-known and straightforward, but other parts, which we address, are susceptible to large inaccuracies and errors. We address several of these difficulties and develop reasonable solutions for two known issues, high missing value levels and high colinearity of independent variables.","PeriodicalId":383774,"journal":{"name":"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)","volume":"73 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Analysis of customer satisfaction survey data\",\"authors\":\"Pete Rotella, S. Chulani\",\"doi\":\"10.1109/MSR.2012.6224304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cisco Systems, Inc., conducts a customer satisfaction survey (CSAT) each year to gauge customer sentiment regarding Cisco products, technical support, partner- and Cisco-provided technical services, order fulfillment, and a number of other aspects of the companys business. The results of the analysis of this data are used for several purposes, including ascertaining the viability of new products, determining if customer support objectives are being met, setting engineering in-process and customer experience yearly metrics goals, and assessing, indirectly, the success of engineering initiatives. Analyzing this data, which includes 110,000 yearly sets of survey responses that address over 100 product and services categories, is in many respects complicated. For example, skip logic is an integral part of the survey mechanics, and forming aggregate views of customer sentiment is statistically challenging in this data environment. In this paper, we describe several of the various analysis approaches currently used, pointing out some situations where a high level of precision is not easily achieved, and some situations in which it is possible to easily end up with erroneous results. The analysis and statistical territory covered in this paper is in parts well-known and straightforward, but other parts, which we address, are susceptible to large inaccuracies and errors. We address several of these difficulties and develop reasonable solutions for two known issues, high missing value levels and high colinearity of independent variables.\",\"PeriodicalId\":383774,\"journal\":{\"name\":\"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"73 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2012.6224304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2012.6224304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

思科系统公司每年都会进行一次客户满意度调查(CSAT),以评估客户对思科产品、技术支持、合作伙伴和思科提供的技术服务、订单履行以及公司业务的许多其他方面的看法。这些数据的分析结果用于几个目的,包括确定新产品的可行性,确定是否满足客户支持目标,设置工程过程和客户体验年度指标目标,以及间接评估工程计划的成功。这些数据包括每年11万套调查反馈,涉及100多种产品和服务类别,分析这些数据在很多方面都很复杂。例如,跳过逻辑是调查机制的一个组成部分,在这种数据环境中,形成客户情绪的汇总视图在统计上具有挑战性。在本文中,我们描述了目前使用的几种不同的分析方法,指出了一些不容易达到高精度的情况,以及一些很容易得到错误结果的情况。本文所涉及的分析和统计领域在某些方面是众所周知的和直截了当的,但是我们所讨论的其他部分容易受到很大的不准确和错误的影响。我们解决了其中的一些困难,并针对两个已知的问题,高缺失值水平和自变量的高共线性,制定了合理的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of customer satisfaction survey data
Cisco Systems, Inc., conducts a customer satisfaction survey (CSAT) each year to gauge customer sentiment regarding Cisco products, technical support, partner- and Cisco-provided technical services, order fulfillment, and a number of other aspects of the companys business. The results of the analysis of this data are used for several purposes, including ascertaining the viability of new products, determining if customer support objectives are being met, setting engineering in-process and customer experience yearly metrics goals, and assessing, indirectly, the success of engineering initiatives. Analyzing this data, which includes 110,000 yearly sets of survey responses that address over 100 product and services categories, is in many respects complicated. For example, skip logic is an integral part of the survey mechanics, and forming aggregate views of customer sentiment is statistically challenging in this data environment. In this paper, we describe several of the various analysis approaches currently used, pointing out some situations where a high level of precision is not easily achieved, and some situations in which it is possible to easily end up with erroneous results. The analysis and statistical territory covered in this paper is in parts well-known and straightforward, but other parts, which we address, are susceptible to large inaccuracies and errors. We address several of these difficulties and develop reasonable solutions for two known issues, high missing value levels and high colinearity of independent variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MINCE: Mining change history of Android project Co-evolution of logical couplings and commits for defect estimation Analysis of customer satisfaction survey data Do faster releases improve software quality? An empirical case study of Mozilla Firefox Why do software packages conflict?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1