{"title":"在标准单元布局合成中结合全局单元内布线的最佳晶体管放置","authors":"Kyeongrok Jo, Taewhan Kim","doi":"10.1109/ICCD53106.2021.00085","DOIUrl":null,"url":null,"abstract":"The synthesis of standard cell layouts is largely divided into two tasks namely transistor placement and in-cell routing. Since the result of transistor placement highly affects the quality of in-cell routing, it is crucial to accurately and efficiently predict in-cell routability during transistor placement. In this work, we address the problem of an optimal transistor placement combined with global in-cell routing with the primary objective of minimizing cell size and the secondary objective of minimizing wirelength for global in-cell routing. To this end, unlike the conventional indirect and complex SMT (satisfiability modulo theory) formulation, we propose a method of direct and efficient formulation of the original problem based on SMT. Through experiments, it is confirmed that our proposed method is able to produce minimal-area cell layouts with minimal wirelength for global in-cell routing while spending much less running time over the conventional optimal layout generator.","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Transistor Placement Combined with Global In-cell Routing in Standard Cell Layout Synthesis\",\"authors\":\"Kyeongrok Jo, Taewhan Kim\",\"doi\":\"10.1109/ICCD53106.2021.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of standard cell layouts is largely divided into two tasks namely transistor placement and in-cell routing. Since the result of transistor placement highly affects the quality of in-cell routing, it is crucial to accurately and efficiently predict in-cell routability during transistor placement. In this work, we address the problem of an optimal transistor placement combined with global in-cell routing with the primary objective of minimizing cell size and the secondary objective of minimizing wirelength for global in-cell routing. To this end, unlike the conventional indirect and complex SMT (satisfiability modulo theory) formulation, we propose a method of direct and efficient formulation of the original problem based on SMT. Through experiments, it is confirmed that our proposed method is able to produce minimal-area cell layouts with minimal wirelength for global in-cell routing while spending much less running time over the conventional optimal layout generator.\",\"PeriodicalId\":154014,\"journal\":{\"name\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD53106.2021.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Transistor Placement Combined with Global In-cell Routing in Standard Cell Layout Synthesis
The synthesis of standard cell layouts is largely divided into two tasks namely transistor placement and in-cell routing. Since the result of transistor placement highly affects the quality of in-cell routing, it is crucial to accurately and efficiently predict in-cell routability during transistor placement. In this work, we address the problem of an optimal transistor placement combined with global in-cell routing with the primary objective of minimizing cell size and the secondary objective of minimizing wirelength for global in-cell routing. To this end, unlike the conventional indirect and complex SMT (satisfiability modulo theory) formulation, we propose a method of direct and efficient formulation of the original problem based on SMT. Through experiments, it is confirmed that our proposed method is able to produce minimal-area cell layouts with minimal wirelength for global in-cell routing while spending much less running time over the conventional optimal layout generator.