用于在完成任务期间捕获动态交互的手持式电动工具的仪表

Gia-Hoang Phan, C. Hansen, Paolo Tommasino, Asif Hussain, D. Campolo
{"title":"用于在完成任务期间捕获动态交互的手持式电动工具的仪表","authors":"Gia-Hoang Phan, C. Hansen, Paolo Tommasino, Asif Hussain, D. Campolo","doi":"10.1109/BIOROB.2016.7523743","DOIUrl":null,"url":null,"abstract":"Implementing human like performance in industrial applications is a challenging task. This paper presents a concept to capture the relationship between a grinding tool and a workpiece for future robotic implementation. A grinding tool has been instrumented with force sensors to measure 3D forces and torques, and consequently the contact point and its features have been studied during a grinding task. The results show that the contact point between the tool and the workpiece can be precisely estimated and the results have been validated using 3D motion capture. The contact point and the contact ellipses have been traced on a workpiece. The results of this study are promising and the proposed algorithms and features of the tool can be implemented in a variety of applications. In the near future instrumented tools may be used by robots during industrial tasks in order to improve their performance and allow constant feedback based on the contact point and 3D forces.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Instrumentation of a hand-held power tool for capturing dynamic interaction during finishing tasks\",\"authors\":\"Gia-Hoang Phan, C. Hansen, Paolo Tommasino, Asif Hussain, D. Campolo\",\"doi\":\"10.1109/BIOROB.2016.7523743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing human like performance in industrial applications is a challenging task. This paper presents a concept to capture the relationship between a grinding tool and a workpiece for future robotic implementation. A grinding tool has been instrumented with force sensors to measure 3D forces and torques, and consequently the contact point and its features have been studied during a grinding task. The results show that the contact point between the tool and the workpiece can be precisely estimated and the results have been validated using 3D motion capture. The contact point and the contact ellipses have been traced on a workpiece. The results of this study are promising and the proposed algorithms and features of the tool can be implemented in a variety of applications. In the near future instrumented tools may be used by robots during industrial tasks in order to improve their performance and allow constant feedback based on the contact point and 3D forces.\",\"PeriodicalId\":235222,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2016.7523743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2016.7523743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在工业应用程序中实现类似人类的性能是一项具有挑战性的任务。本文提出了一个概念来捕捉磨削工具和工件之间的关系,为未来的机器人实现。在磨削工具上安装了力传感器来测量三维力和扭矩,从而研究了磨削过程中的接触点及其特征。结果表明,该方法可以精确估计刀具与工件之间的接触点,并通过三维运动捕捉对结果进行了验证。已在工件上描出接触点和接触椭圆。这项研究的结果是有希望的,并且所提出的算法和工具的特征可以在各种应用中实现。在不久的将来,机器人可能会在工业任务中使用仪表工具,以提高它们的性能,并允许基于接触点和3D力的持续反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Instrumentation of a hand-held power tool for capturing dynamic interaction during finishing tasks
Implementing human like performance in industrial applications is a challenging task. This paper presents a concept to capture the relationship between a grinding tool and a workpiece for future robotic implementation. A grinding tool has been instrumented with force sensors to measure 3D forces and torques, and consequently the contact point and its features have been studied during a grinding task. The results show that the contact point between the tool and the workpiece can be precisely estimated and the results have been validated using 3D motion capture. The contact point and the contact ellipses have been traced on a workpiece. The results of this study are promising and the proposed algorithms and features of the tool can be implemented in a variety of applications. In the near future instrumented tools may be used by robots during industrial tasks in order to improve their performance and allow constant feedback based on the contact point and 3D forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robotic biomarkers in RETT Syndrome: Evaluating stiffness Design of a hydraulic ankle-foot orthosis Role of EMG as a complementary tool for assessment of motor impairment A soft robotic sock device for ankle rehabilitation and prevention of deep vein thrombosis Coupled systems analyses for high-performance robust force control of wearable robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1