非负CP张量分解对噪声的鲁棒性

Jamie Haddock, Lara Kassab, Alona Kryshchenko, D. Needell
{"title":"非负CP张量分解对噪声的鲁棒性","authors":"Jamie Haddock, Lara Kassab, Alona Kryshchenko, D. Needell","doi":"10.1109/ITA50056.2020.9244932","DOIUrl":null,"url":null,"abstract":"In today’s data-driven world, there is an unprecedented demand for large-scale temporal data analysis. Dynamic topic modeling has been widely used in social and data sciences with the goal of learning latent topics that emerge, evolve, and fade over time. Previous work on dynamic topic modeling primarily employ the method of nonnegative matrix factorization (NMF), where slices of the data tensor are each factorized into the product of lower dimensional nonnegative matrices. With this approach, however, noise can have devastating effects on the learned latent topics and obscure the true topics in the data. To overcome this issue, we propose instead adopting the method of nonnegative CANDECOMP/PARAFAC (CP) tensor decomposition (NNCPD), where the data tensor is directly decomposed into a minimal sum of outer products of nonnegative vectors. We show experimental evidence that suggests that NNCPD is robust to noise in the data when one overestimates the CP rank of the tensor.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Nonnegative CP Tensor Decomposition Robustness to Noise\",\"authors\":\"Jamie Haddock, Lara Kassab, Alona Kryshchenko, D. Needell\",\"doi\":\"10.1109/ITA50056.2020.9244932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s data-driven world, there is an unprecedented demand for large-scale temporal data analysis. Dynamic topic modeling has been widely used in social and data sciences with the goal of learning latent topics that emerge, evolve, and fade over time. Previous work on dynamic topic modeling primarily employ the method of nonnegative matrix factorization (NMF), where slices of the data tensor are each factorized into the product of lower dimensional nonnegative matrices. With this approach, however, noise can have devastating effects on the learned latent topics and obscure the true topics in the data. To overcome this issue, we propose instead adopting the method of nonnegative CANDECOMP/PARAFAC (CP) tensor decomposition (NNCPD), where the data tensor is directly decomposed into a minimal sum of outer products of nonnegative vectors. We show experimental evidence that suggests that NNCPD is robust to noise in the data when one overestimates the CP rank of the tensor.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9244932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在当今数据驱动的世界中,对大规模时间数据分析的需求前所未有。动态主题建模已广泛应用于社会科学和数据科学,其目标是学习随时间出现、演变和消退的潜在主题。之前关于动态主题建模的工作主要采用非负矩阵分解(NMF)方法,其中每个数据张量的切片被分解成低维非负矩阵的乘积。然而,使用这种方法,噪声会对学习到的潜在主题产生破坏性影响,并模糊数据中的真实主题。为了克服这个问题,我们建议采用非负CANDECOMP/PARAFAC (CP)张量分解(NNCPD)方法,将数据张量直接分解为非负向量的外积的最小和。我们展示了实验证据,表明当一个人高估张量的CP秩时,NNCPD对数据中的噪声具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Nonnegative CP Tensor Decomposition Robustness to Noise
In today’s data-driven world, there is an unprecedented demand for large-scale temporal data analysis. Dynamic topic modeling has been widely used in social and data sciences with the goal of learning latent topics that emerge, evolve, and fade over time. Previous work on dynamic topic modeling primarily employ the method of nonnegative matrix factorization (NMF), where slices of the data tensor are each factorized into the product of lower dimensional nonnegative matrices. With this approach, however, noise can have devastating effects on the learned latent topics and obscure the true topics in the data. To overcome this issue, we propose instead adopting the method of nonnegative CANDECOMP/PARAFAC (CP) tensor decomposition (NNCPD), where the data tensor is directly decomposed into a minimal sum of outer products of nonnegative vectors. We show experimental evidence that suggests that NNCPD is robust to noise in the data when one overestimates the CP rank of the tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1